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On rare variants in principal component

analysis of population stratification
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Abstract

Background: Population stratification is a known confounder of genome-wide association studies, as it can lead to
false positive results. Principal component analysis (PCA) method is widely applied in the analysis of population
structure with common variants. However, it is still unclear about the analysis performance when rare variants are
used.

Results: We derive a mathematical expectation of the genetic relationship matrix. Variance and covariance
elements of the expected matrix depend explicitly on allele frequencies of the genetic markers used in the PCA
analysis. We show that inter-population variance is solely contained in K principal components (PCs) and mostly in
the largest K-1 PCs, where K is the number of populations in the samples. We propose FPC, ratio of the inter-
population variance to the intra-population variance in the K population informative PCs, and d2, sum of squared
distances among populations, as measures of population divergence. We show analytically that when allele
frequencies become small, the ratio FPC abates, the population distance d2 decreases, and portion of variance
explained by the K PCs diminishes. The results are validated in the analysis of the 1000 Genomes Project data. The
ratio FPC is 93.85, population distance d2 is 444.38, and variance explained by the largest five PCs is 17.09% when
using with common variants with allele frequencies between 0.4 and 0.5. However, the ratio, distance and
percentage decrease to 1.83, 17.83 and 0.74%, respectively, with rare variants of frequencies between 0.0001 and
0.01.

Conclusions: The PCA of population stratification performs worse with rare variants than with common ones. It is
necessary to restrict the selection to only the common variants when analyzing population stratification with
sequencing data.

Keywords: Rare variant, Population stratification, Principal component analysis, Single nucleotide polymorphism
Background
Genome-wide association studies (GWAS) [1] have iden-
tified a considerable number of sequence variants, such
as single nucleotide polymorphisms (SNPs), associated
with human diseases or traits. Population stratification—
allele frequencies of genetic markers of the studied sam-
ples having significant differences owing to systematic
ancestry differences—can cause false positive results in
case-control as well as cohort studies [2, 3]. Association
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mapping based on rare variants are much more suscep-
tible to subtle effects of population stratification and
therefore, more likely to yield false positive results [4].
From a population genetics point of view, exploring
population structure is important for understanding the
evolutionary history of populations. Many methods and
software are available to study the population stratifica-
tion, such as the principal component analysis (PCA)
implemented in EIGENSOFT [5, 6], the multidimen-
sional scaling analysis in PLINK [7], the clustering ana-
lysis in STRUCTURE [8, 9], and fastSTRUCTURE [10].
Recently, controlling population stratification in the
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association analysis using linear mixed models [11–14]
was also suggested. Based on a large number of common
variants whose minor allele frequencies (MAFs) are lar-
ger than 5%, the PCA of population structure is widely
applied in GWAS.
With the advance of high-throughput sequencing

technology, as well as the enormous reduction of the
cost, it is capable and affordable in genetic studies to de-
tect additional low-frequency and rare variants (MAF <
1%) [15]. Furthermore, existing sequencing data suggest
that the vast majority of rare variants are population-
specific. In the 1000 Genomes Project data [16, 17],
there are a total of 77 million biallelic SNPs, among
which 65 million are rare and 52 million are poly-
morphic in one of the five continental ancestry popula-
tions: East Asian (EAS), South Asian (SAS), African
(AFR), European (EUR), American (AMR). It seems that
rare variants are more informative in distinguishing
population structure than common ones. However, the
efficacy of using rare variants in population stratification
analysis remains controversial [18–21].
A number of efforts have been made concerning the

use of low-frequency and rare variants in population
stratification analysis. Baye et al. illustrated that more
fine substructure can be detected using rare variants and
suggested that more SNPs are required to account for a
similar level of population structure using rare variants
compared to common ones [18]. Siu et al. showed that
rare variants have a much higher power to identify
population substructure than common variants [19]. In
contrast, Zhang et al. demonstrated that PCAs based on
common and less-frequency SNPs perform better than
those based on rare ones in separating European and Af-
rican samples [20]. The authors further concluded that
there is little added value for PCA of population stratifi-
cation with rare variants only [21]. All existing work was
based on analysis of genotype data from the 1000 Ge-
nomes Project with known population structure.
In this work, we investigate how rare variants affect

PCA of population stratification from a theoretical per-
spective. We derive mathematical expectation of the
genetic relationship matrix (GRM) [22]. The GRM is
commonly computed from the observed genotypes and
eigen-decomposed in the analysis of population stratifi-
cation. Elements of the expected genetic relationship
matrix (EGRM), however, depend explicitly on the allele
frequencies of the markers used. We show that inter-
population variance is solely contained in K principal
components (PCs) and mostly in the largest K-1 PCs,
where K is the number of populations in the sample. We
propose FPC, ratio of the inter-population variance to
the intra-population variance in the K population in-
formative PCs, and d2, sum of squared distances among
populations, as measures of population divergence. We
show analytically that when allele frequencies become
small, the ratio FPC abates, the population distance d2

decreases, and portion of variance explained by the K
PCs diminishes. Therefore, the PCA of population strati-
fication performs worse with rare variants than with
common ones. The results are further validated in the
analysis of the 1000 Genomes Project data with 2504 in-
dividuals from five continental populations.
Methods
Genetic relationship matrix
In the scenario where genotype data of individuals is
sampled from K populations, there are Nk individuals in
population k and the number of individuals in the total
population is N =N1 +N2 +⋯ +NK. We have M SNPs,
whose frequencies of their coded alleles in population k
are [ fk1, fk2,⋯, fkM]. Let X be the genotype matrix of di-
mension N ×M. The genotypic value X(n,m) is the num-
ber of the coded allele of SNP m for individual n, where
n = 1, 2, ⋯, N and m = 1, 2, ⋯, M. Typically, the number
of individuals is less than the number of markers, i.e.
N <M. We assume that all SNPs are under the Hardy-
Weinberg equilibrium in each population. The GRM can
be calculated as

Z ¼ 1
M

YYT; ð1Þ

where each entry of Y is a normalized version of the
coded genotype in X, i.e.

Y n;mð Þ ¼ X n;mð Þ−μm
σm

ð2Þ

for n = 1, 2, ⋯, N and m = 1, 2, ⋯, M. Here, μm and σm
denote the genotypic mean and standard deviation of
SNP m in the total population, respectively. It can be
shown that μm and σm relate to the population structure
and allele frequencies as follows (Supplemental Text S1)

μm ¼ 2

PK
k¼1Nk f km

N
; ð3Þ

σ2m ¼ 2

PK
k¼1Nk f km 1− f km

� �
N

þ 4

PK
k¼1

PK
l¼1
k≠l
NkNl

N2 f km− f lm
� �2

: ð4Þ

The coded-allele frequency of SNP m in the total
population can be found as fm = μm/2, where m = 1, 2,
⋯, M. The GRM is of dimension N ×N, whose diagonal
elements are genotypic variance of individuals and off-
diagonal elements are genotypic covariance between two
individuals. It should be noted that genotypes follow
mixed binomial distributions, and elements of Z are
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sample variances and covariance computed from the
genotype data. The PCA analysis of population strati-
fication is based on the eigen-analysis of the observed
GRM Z.
In practice, μm and σm are unknown, and therefore

sample mean μ̂m and sample standard deviation σ̂m or
some other quantities similar are used instead. Usually,

μ̂m ¼ 2 f̂ m is used for the centralization in (2). In

EIGENSOFT,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂ mð1− f̂ mÞ

q
is adopted for the

normalization in (2), while
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f̂ mð1− f̂ mÞ

q
is employed in

GCTA [22]. Different estimates of the allele frequency
fm were suggested as well [5, 6]. In the following theoret-
ical derivations, we assume that μm and σm are known
for the sake of simplicity. This will bring about clear
connections between variance and covariance elements
of the EGRM and allele frequencies of the SNPs used in
the analysis. The connections further provide clues and
insights for understanding the effect of rare variants on
the PCA of population stratification.
Expected genetic relationship matrix
We assume that all individuals are unrelated. When the
number of markers M goes large, the sample variance
and covariance elements in the GRM will converge to
their mathematical expectations in probability due to the
law of large numbers. We denote the EGRM as Z, which
is the expectation of the GRM Z. Without loss of gener-
ality, we assume that individuals are ordered according
to their population memberships. As such, the first N1

rows and columns correspond to individuals from popu-
lation 1, the next N2 rows and columns are from popula-
tion 2, and so on. Thus, the EGRM can be partitioned
into a block matrix consisting of K × K submatrices

Z ¼
Z11 Z12 … Z1K

ZT
12 Z22 … Z2K

⋮ ⋮ ⋱ ⋮
ZT
1K ZT

2K … ZKK

0
BB@

1
CCA: ð5Þ

Diagonal sub-matrices of the EGRM Z have the fol-
lowing structure

Zkk ¼
zk zkk … zkk

zkk zk … zkk

⋮ ⋮ ⋱ ⋮
zkk zkk … zk

0
BB@

1
CCA; k ¼ 1; 2; :::;K : ð6Þ

Here, diagonal elements of the submatrix Zkk are of
the mathematical form
zk ¼ 1
M

XM
m¼1

2 f km 1− f km
� �þ 2 f km−μm

� �2
σ2m

ð7Þ

which is the genotypic variance of individuals from
population k. All off-diagonal elements share the form

zkk ¼ 1
M

XM
m¼1

2 f km−μm
� �2

σ2m
ð8Þ

which is the genotypic covariance between two individ-
uals from population k.
The off-diagonal sub-matrices of the EGRM Z are

structured as follows

Zkl ¼
zkl zkl … zkl

zkl zkl … zkl

⋮ ⋮ ⋱ ⋮
zkl zkl … zkl

0
BB@

1
CCA; k≠l: ð9Þ

Elements of Zkl share the value

zkl ¼ 1
M

XM
m¼1

2 f km−μm
� �

2 f lm−μmð Þ
σ2m

ð10Þ

which is the genotypic covariance between one indi-
vidual from population k and one from population l.
Details of the derivations are presented in Supplemental
Text S2.
The EGRM Z, the mathematical expectation of GRM

Z, depends only on the population sizes N1, N2, ⋯, NK

and allele frequencies of the M SNPs in K populations
[ fk1, fk2,⋯, fkM], k = 1, 2, ⋯, K. Here, we treat the SNP
number M and the allele frequencies as fixed numbers.
A theoretical formulation of the PCA that considers
genotypic values as a random vector and allele frequen-
cies in different populations being random was proposed
in Ma and Amos, 2010 [23]. Based on different assump-
tions, a genotypic variance-covariance matrix of the
same structure was attained; nevertheless, elements of
the EGRM are different from those of the variance-
covariance matrix in [23].

Rare variants on the eigenvalues
Carrying out eigen-decomposition on the EGRM, it can
be shown that there are Nk − 1 eigenvalues of value zk −
zkk, for k = 1, 2, ⋯, K. Here,

zk−zkk ¼ 1
M

XM

m¼1

2 f km 1− f km
� �
σ2m

:

The sum of the N − K eigenvalues is
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XK

k¼1
Nk−1ð Þ zk−zkk

� � ¼ 1
M

XM

m¼1

XK

k¼1

2 Nk−1ð Þ f km 1− f km
� �

σ2
m

ð11Þ
Clearly, variations in the N − K PCs are entirely intra-

population variance of the K populations. The sum of
the other K eigenvalues is

XK
k¼1

λk ¼
XK

k¼1
Nkz

kk þ
XK

k¼1
zk−zkk
� �

¼ σ2B þ σ2W; ð12Þ
where

σ2B ¼
XK

k¼1
Nkz

kk ¼ 1
M

XM

m¼1

XK

k¼1

Nk 2 f km−μm
� �2

σ2m

represents the inter-population variance component and

σ2W ¼
XK

k¼1
zk−zkk
� �

¼ 1
M

XM

m¼1

XK

k¼1

2 f km 1− f km
� �
σ2m

stands for the intra-population variance component.
Here, the intra-population covariance zkk of the EGRM
factor in the K PCs as the inter-population variance after
the eigen-decomposition. Note that all inter-population
variance is solely contained in the K PCs. Hence, it is
sufficient to conduct the population stratification ana-
lysis based on the K PCs alone.
Given a set of SNPs, the divergence among the K pop-

ulations can be measured by the ratio of the two vari-
ance components, i.e.

FPC ¼ σ2B
σ2W

: ð13Þ

Its normalized version can be defined as

F�PC ¼ σ2B
σ2B þ σ2W

; ð14Þ

which measures the portion of inter-population variance
in the K population informative PCs and takes a value
between 0 and 1. The larger the FPC and F�PC are, the
more divergence among the populations.

Note that μm ¼ 2 f m ¼ 2
N

PK
k¼1Nk f km , terms in σ2

B are
quadratic functions of fkm, k = 1, 2, ⋯, K, m = 1, 2, ⋯,
M. However, terms in σ2W are linear and quadratic func-
tions of the frequencies. Therefore, FPC will decrease
when frequencies of the coded alleles become smaller,
see Supplemental Text S3 for more details. As a result,
instead of improving the population stratification ana-
lysis, using rare variants will deteriorate the analysis per-
formance. Meanwhile, since σ2B decreases faster than σ2

W,
the K eigenvalues will be closer to the other N − K eigen-
values when frequencies of the coded alleles become
smaller. Thus, the percent of variance explained by the
K PCs will be smaller.
It can be shown that among the K eigenvalues, K − 1

are of large values and one small. When intra-
population variance zk − zkk of the K populations are
equal, all inter-population variance is contained in the
largest K − 1 eigenvalues. In addition, when the sample
size is large and the portions of populations remain,
inter-population variance contained in the small eigen-
value is negligible, almost all information on the popula-
tion structure is contained in the largest K − 1 PCs.
For cases with two populations, it can be shown that

the two eigenvalues are

λ1 ¼ N1z11

2
þ N2z22

2
þ z1−z11

2
þ z2−z22

2
þ

ffiffiffi
a

p
2

;

λ2 ¼ N1z11

2
þ N2z22

2
þ z1−z11

2
þ z2−z22

2
−

ffiffiffi
a

p
2

;

where

a ¼ z1−z11
� �

− z2−z22
� �þ N1z

11−N2z
22

� �2
þ 4N1N2 z12

� �2
:

When inter-population variance of the two popula-
tions are equal, i.e. z1−z11 ¼ z2−z22 ¼ σ2W=2, we have

λ1 ¼ N1z
11 þ N2z

22 þ σ2W
2

;

λ2 ¼ σ2W
2

:

That is, all information on the population structure is
contained in the largest PC. All proofs are presented in
Supplemental Text S4.

Rare variants on the population distance
Suppose that xk, k = 1, 2, ⋯, K are the eigenvectors asso-
ciated with the K eigenvalues containing inter-
population variance. We can represent each individual
as a point in the K-dimension space. Vector

ffiffiffiffiffi
λk

p
xk con-

sists of coordinates of N individuals in the k-th dimen-
sion. Average value

ffiffiffiffiffi
λk

p
xTk 1N=N represents center of the

total population in the k-th dimension, where 1N is a
column vector of dimension N and with each element as
1. Due to the structure of Z, individuals from the same
population share the same coordinates in the K-dimen-
sion space, and the common points denote the representa-
tive points of the populations, or centers of the
populations [23]. We define
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d2 ¼
XK

k¼1

ffiffiffiffiffi
λk

p
xk−

ffiffiffiffiffi
λk

p
xTk 1N=N

� �
1N

h iT

ffiffiffiffiffi
λk

p
xk−

ffiffiffiffiffi
λk

p
xTk 1N=N

� �
1N

h i

¼
XK

k¼1
λk−

1
N
1TNZ1N

¼
XK

k¼1
λk−

1
N

XK

k¼1
Nk zk−zkk

� � ð15Þ

which measures the population divergence as the sum of
squared distances among populations. The proof is
shown in Supplemental Text S5. Here, the second term
in (15) is an average intra-population variance. As ex-
plained earlier that when allele frequencies become
smaller, the K eigenvalues decrease. Hence, the popula-
tion distance d2 is smaller when using rare SNPs com-
pared to common ones.

The 1000 genomes project data
We used genotype data from the 1000 Genomes Project
to validate our theoretical results. Genotype data used in
this work was obtained from Phase 3 version 5a of the
1000 Genomes Project [16, 17], which contains 84.4 mil-
lion genetic markers and 2504 individuals from EUR,
EAS, SAS, AFR and AMR. We extracted biallelic SNPs
that are polymorphic in the total population. In sum-
mary, there are 77,279,863 SNPs; 5,261,820 are common
(0.1 <MAF ≤ 0.5), 6,770,457 are low-frequency (0.01 <
MAF ≤ 0.1), and 65,247,586 are rare (0.0001 <MAF ≤
0.01). Genotype data were converted to PLINK format
with VCFtools [24]. The SNPs were divided into six fre-
quency bins according to their MAFs, as shown in
Table 1. For each bin, we randomly sampled approxi-
mately 100,000 SNPs using PLINK for the population
stratification analyses. Here, MAFs of the SNPs in the
total population were used, hence their frequencies in
the five populations may be different and may not be in
the same bins as in the total population. For SNPs in bin
5 and 6, they are polymorphic in the total population
and may not be polymorphic in all of the five
Table 1 Summary of SNPs from the 1000 Genomes Project data

Common SNP

MAF (0.4,0.5] (0.3,0.4] (0.2,0.3]

Pop (N) Bin 1 Bin 2 Bin 3

EUR (503) 995,352 1,048,669 1,190,239

EAS (504) 970,359 1,010,549 1,130,961

AMR (347) 1,004,970 1,068,395 1,234,095

SAS (489) 1,001,330 1,077,620 1,239,727

AFR (661) 981,929 1,097,944 1,436,771

Total (2504) 1,023,570 1,105,365 1,308,728

MAF minor allele frequency, Pop population, EUR European, EAS East Asian, AMR Am
populations. PCAs were carried out, with GRMs com-
puted by EIGENSOFT and PCAs on EGRMs conducted
using GCTA. Default parameters were used when ana-
lyzing with EIGENSOFT, which excluded 68 and 116
outliers in the analyses of the data from frequency bin 5
and 6, respectively.
Results
Theoretical and empirical EGRMs
To calculate the theoretical results (5)–(10), we com-
puted MAFs of the SNPs with PLINK. Values of variance
zk and covariance zkk, zkl, k, l = 1, 2, ⋯K, were calculated
as in (7), (8), and (10), respectively, in which μm was
computed with (3) and σ2m ¼ 2 f mð1− f mÞ, m = 1, 2, ⋯M.
Values of zk and zkk for the five populations with SNPs
from the six frequency bins are presented in Table 2.
Absolute values of the inter-population covariance zkl

are much smaller and the results are shown in Supple-
mental Tables S1–6.
To obtain the empirical values of variance zk, as

well as covariance zkk and zkl, we first computed
GRMs with SNPs from the six bins using EIGEN-
SOFT. Each GRM included N(N + 1)/2 variance and
covariance terms of N individuals based on the ob-
served genotype data. Empirical value of zk was com-
puted as the average variance of the Nk individuals
from population k. The empirical value of zkk is the
average covariance of Nk(Nk − 1)/2 pairs of individuals
from population k. Lastly, the value of zkl is the aver-
age covariance of NkNl pairs of individuals, one from
population k and one from population l. The results
of zk and zkk are shown in Table 2, and those of zkl

are presented in Supplemental Tables S1–6.
We can see that across the six frequency bins, the-

oretical values of zk, zkk, and zkl predicted by (7), (8),
and (10), respectively, are close to their empirical
values. When MAFs of the SNPs become smaller,
intra-population covariance zkk decreases. For ex-
ample, zkk was 0.2 for EAS with SNPs whose MAFs
are between 0.4 and 0.5, which reduced to 0.003 in
Low-frequency SNP Rare SNP

(0.1,0.2] (0.01,0.1] (0. 0001,0.01]

Bin 4 Bin 5 Bin 6

1,581,788 3,717,490 13,531,139

1,440,178 2,982,582 14,189,976

1,613,443 4,827,083 16,092,172

1,626,183 3,989,855 15,562,799

2,403,901 8,852,607 24,044,176

1,824,157 6,770,457 65,247,586

erican, SAS South Asian, AFR African



Table 2 Theoretical and empirical values of the variance and covariance elements of EGRMs

MAF EUR EAS AMR SAS AFR

zk

(0.4,0.5] 1.06/0.97 1.11/1.02 1.04/0.97 1.04/0.96 1.15/1.05

(0.3,0.4] 1.06/0.97 1.11/1.02 1.04/0.97 1.04/0.96 1.14/1.05

(0.2,0.3] 1.05/0.96 1.09/1.00 1.03/0.97 1.03/0.96 1.17/1.07

(0.1,0.2] 0.99/0.91 1.01/0.93 0.98/0.93 0.99/0.92 1.32/1.22

(0.01,0.1] 0.61/0.57 0.50/0.47 0.73/0.70 0.56/0.53 2.50/2.37

(0.0001,0.01] 0.71/0.71 0.94/0.94 0.82/0.82 0.98/0.98 1.46/1.46

zkk

(0.4,0.5] 0.13/0.11 0.22/0.20 0.08/0.07 0.08/0.07 0.30/0.28

(0.3,0.4] 0.13/0.11 0.22/0.20 0.07/0.06 0.08/0.07 0.29/0.26

(0.2,0.3] 0.12/0.11 0.21/0.19 0.07/0.06 0.08/0.07 0.27/0.24

(0.1,0.2] 0.11/0.10 0.18/0.17 0.07/0.06 0.08/0.07 0.27/0.25

(0.01,0.1] 0.06/0.05 0.08/0.07 0.04/0.03 0.05/0.04 0.25/0.23

(0.0001,0.01] 0.004/0.002 0.005/0.003 0.004/0.002 0.005/0.003 0.011/0.008

The first values are theoretical values of the variance and covariance, and second values are empirical values
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the sixth bin that included rare SNPs only. A similar
pattern can be observed for the other four popula-
tions. FPC was estimated by (13) for the six bins,
where empirical values of zk and zkk were used. The
FPC decreases from 93.85 in bin 1 to 55.01 in bin 5,
and further to 1.83 in bin 6. Thus the divergence
among the populations is much larger when measured
by common SNPs than by rare ones.
PCAs of the 1000 genomes project data
With genotypes of SNPs from each frequency bin, we
carried out PCAs of population stratification by EIGEN-
SOFT, which was essentially based on the eigen-analysis
of the observed GRMs. Scatter plots of the largest three
PCs are shown in Figs. 1 and 2, where eigenvectors were
scaled by square roots of their corresponding
eigenvalues.
From Figs. 1 and 2, we can see patterns of popula-

tion structure computed with common and less-
frequency SNPs. For example, Figs. 1a-e and 2a-e dis-
played similar patterns, whereas the scatter plots
based on rare SNPs differed significantly. For ex-
ample, AMR and SAS are separated mostly by the
third PC with common SNPs, while they are distin-
guished by the second PC with rare ones. The third
PC from rare SNPs reveals mostly substructure of
AFR, likely because more rare SNPs are polymorphic
in AFR than in other populations. Portions of vari-
ance explained by the largest five PCs decrease from
17.09% in bin 1 to 10.41% in bin 5, and it falls dra-
matically to 0.74% with rare SNPs only. As a result,
the five populations are more closely distributed
around the origin in Figs. 1f and 2f, compared with
those in Figs. 1a-e and 2a-e. Clearly, common variants
show much better performance in dissecting the
population structure than rare variants do.
PCAs of EGRMs
For each frequency bin, we also constructed a EGRM
with structure as described in (5), (6), and (9), whose
variance and covariance elements were their theoretical
values calculated by (7), (8), and (10), respectively. We
conducted PCAs of the EGRMs using GCTA, and scat-
ter plots of the largest three PCs shown in Figs. 1 and 2.
Large symbols in black are representative points or cen-
ters of the five continental populations from eigen-
analyses of the EGRMs. Similarly, coordinates were
scaled by square roots of their eigenvalues.
Upon comparing the representative points in Figs. 1

and 2, we can see that distances between populations de-
crease as the SNPs change from common to rare. Sum
of the squared distance d2 was calculated for the six fre-
quency bins by (15), where λk, k = 1, 2, ⋯K were the ei-
genvalues of the EGRM Z and zk, zkk, k = 1, 2, ⋯K were
their theoretical values. The d2 decreases from 444.38 in
bin 1 to 254.10 in bin 5, and further to 17.83 in bin 6.
In addition, when portions of variance explained by the

PCs become small, deviations between the representative
points of the populations and true centers of the popula-
tions can be observed. This is particularly evident in the
scatter plots with rare SNPs. In the PCAs of a single popu-
lation, such deviations are more obvious when percents of
variance explained by the largest PCs are much smaller.
Discussion
We showed that all information about the population
structure is contained in K PCs. Genotypic variance
explained by the K PCs can be further decomposed



Fig. 1 Scatter plots and representative points with SNPs from six MAF bins, PC 1 vs. PC 2. (a) 0.4 < MAF≤ 0.5 (b) 0.3 < MAF≤ 0.4 (c) 0.2 < MAF≤
0.3 (d) 0.1 < MAF≤ 0.2 (e) 0.01 < MAF≤ 0.1 (f) 0.0001 < MAF≤ 0.01. EUR: European, EAS: East Asian, AMR: American, SAS: South Asian, AFR: African.
The first values in brackets are the percentages of variance explained from the PCAs of GRMs; and the second values are from the PCAs of
EGRMs. Large symbols in black are the representative points of the five populations
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into the intra-population variance σ2W and inter-
population variance σ2B . Using more SNPs will im-
prove convergence of the realized GRM to its math-
ematical expectation, i.e. the EGRM. As a result,
individuals belonging to the same population will be
more closely distributed around the representative
point or center of the population on the PC-PC plots.
On the other hand, note that σ2B is the average inter-
population variance contributed from M SNPs. When
rare variants are used, adding more SNPs will not



Fig. 2 Scatter plots and representative points with SNPs from six MAF bins, PC 1 vs. PC 3. (a) 0.4 < MAF≤ 0.5 (b) 0.3 < MAF≤ 0.4 (c) 0.2 < MAF≤
0.3 (d) 0.1 < MAF≤ 0.2 (e) 0.01 < MAF≤ 0.1 (f) 0.0001 < MAF≤ 0.01. EUR: European, EAS: East Asian, AMR: American, SAS: South Asian, AFR: African.
The first values in brackets are the percentages of variance explained from the PCAs of GRMs; and the second values are from the PCAs of
EGRMs. Large symbols in black are the representative points of the five populations
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increase the average level of σ2B, hence neither the ra-
tio FPC nor the sum of squared distances d2 will im-
prove. For same reason, using a combination of
common and rare SNPs will result in lower FPC and
d2 compared with using common SNPs only and
therefore result in worse performance.
In the case where there is one SNP, our FPC and F�PC

can be further reduced to
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FPC ¼ F�PC
1−F�PC

¼ 2

PK
k¼1Nk f k− f

� �2
PK

k¼1 f k 1− f k
� � ;

where fk is the allele frequency in the population k, and f
the frequency in the total population. The classical
Wright’s fixation index FST is widely used to gauge
population stratification [25], which measures the devi-
ation from Hardy-Weinberg equilibrium at the total
population level. In this case, it can be shown that

FST
1−FST

¼
PK

k¼1Nk f k− f
� �2

PK
k¼1Nk f k 1− f k

� � :

Therefore, our F�PC is much larger than FST. It is
worth pointing out that we assign numeric values to
genotypes as numbers of the coded alleles, hence our
results are dependent on such coding scheme. FST,
however, does not involve in the numeric coding of
genotypes. Note also that F�PC measures the portion
of inter-population variance in the K population in-
formative PCs. After the eigen-decomposition, most
of the intra-population variance associated with the
other N-K PCs was excluded. If our FPC were defined
as the ratio of the inter-population variance to the
intra-population variance in the N PCs, it would be
related to FST as FPC = 2FST/(1 − FST).
In GWAS, it is a common practice to conduct popula-

tion stratification analyses using a large number of ran-
dom markers [26], which usually yields satisfactory
results. As shown in this work, the capability of dissect-
ing population structure depends on the allele frequen-
cies of markers used in the analyses, and common
variants perform much better than rare ones. This is not
much of a concern for GWAS because SNP panels im-
plemented in the genotyping platforms are mostly of
common ones. In sequencing studies, however, the ma-
jority of the called variants are rare, and selecting SNPs
randomly will yield a large portion of rare SNPs, which
will deteriorate the analysis performance. Therefore, it is
necessary to restrict the selection to only the common
SNPs when analyzing population stratification with se-
quencing data. This would also be true for controlling
population stratification based on the linear mixed
models [11–14].
In this work, we assumed that μm and σm are known

constants in (2) in order to simplify the theoretical deri-
vations. Our results are approximations of those when
estimates of the two quantities are used. When sample
size N is large, variations associated with μ̂m and σ̂m are
much smaller than those with the genotype data. There-
fore, the mathematical expectations are largely taken
with respect to the genotypes and difference between
the two sets of results would be small. As shown in
Table 2, the predicted values of the EGRM are close to
their empirical values in the 1000 Genome Project data.
We carried out additional simulation studies to evaluate
the effect of lacking knowledge on μm and σm. We ran-
domly chose one SNP from each of the six frequency
bins (Supplemental Table S7). Based on their MAFs ob-
served in the five populations of the 1000 Genomes Pro-
ject, we simulated genotypes of five populations each
with 500 individuals. Values of μm and σm were com-
puted with the assumption of known population struc-
ture and MAF information, and theoretical values of zk

and zkk were then calculated. For comparison, we first
estimated μ̂m and σ̂m from the simulated genotype data.
Y(n, m) were normalized with μ̂m and σ̂m , and zk and zkk

were obtained as averages of sample variance and covari-
ance from 1000 replicates. The two sets of results are
presented in Supplemental Table S8 and the differences
between the two sets of results are negligible except for
small differences in the results with the rare SNP.
Inferring population structure based on a large

number of genome-wide markers are likely to include
markers in linkage disequilibrium (LD). Practical con-
cerns on the LD and choice of markers were exten-
sively discussed in [5]. It is worth noting that each
marker contributes to the elements in GRM addi-
tively, see eqs. S1–3 in Supplemental Text S2. Be-
cause of the linearity of expectation, our EGRM
formulae as well as the eigen-analysis on the EGRM
still hold when LD exists among markers. When the
number of markers goes large, convergence of the
GRM to EGRM will be slower with LD among
markers, compared with the case that independent
markers are used. Since there are always limited num-
ber of markers in the PCA practice, our EGRM and
the eigen-analysis on it represent asymptotic results
of the real PCA analysis.
Despite the fact that the vast majority of rare variants

are population-specific, we showed that performance of
the PCA of population stratification is better when based
on common SNPs rather than rare ones. On the other
hand, the PCA results with rare SNPs do reveal a popu-
lation structure that differs from that of common SNPs.
Existing methods may not exploit ancestry information
embedded in the rare variants efficiently, and different
approaches from those applied to common variants
should be developed [26].
Conclusions
To quantify population divergence as a function of allele
frequencies of genetic markers used in the PCA analysis,
we derived the expected genetic relationship matrix. We
proposed FPC, ratio of the inter-population variance to
the intra-population variance, and population distance
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d2 as measures of population divergence. Our theoretical
results as well as the analyses of the 1000 Genomes Pro-
ject data showed that employing rare variants yielded
smaller FPC in the K population informative PCs, smaller
d2, and smaller portion of variance explained by the K
PCs than those using common variants. Therefore, the
PCA of population stratification performs worse with
rare variants than with common ones. When analyzing
population stratification with sequencing data, it is ne-
cessary to restrict the selection to only the common
variants.
Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12863-020-0833-x.

Additional file 1 Text S1. Proof of eq. (4). Text S2. Proofs of eqs. (5–
10). Text S3. FPC as a function of allele frequencies. Text S4. Proofs of
rare variants on the eigenvalues. Text S5. Proof of eq. (15). Table S1.
Theoretical and empirical values of the inter-population covariance of
EGRM (0.4 < MAF ≤ 0.5). Table S2. Theoretical and empirical values of the
inter-population covariance of EGRM (0.3 < MAF ≤ 0.4). Table S3. Theoret-
ical and empirical values of the inter-population covariance of EGRM
(0.2 < MAF ≤ 0.3). Table S4. Theoretical and empirical values of the inter-
population covariance of EGRM (0.1 < MAF ≤ 0.2). Table S5. Theoretical
and empirical values of the inter-population covariance of EGRM (0.01 <
MAF ≤ 0.1). Table S6. Theoretical and empirical values of the inter-
population covariance of EGRM (0.0001 <MAF ≤ 0.01). Table S7. MAFs of
the six SNPs used in the simulations. Table S8. Expected variance and
covariance with and without the knowledge of μm and σm.
Abbreviations
GWAS: Genome-wide association study; LD: Linkage disequilibrium;
MAF: Minor allele frequency; PC: Principal component; PCA: Principal
component analysis; SNP: Single nucleotide polymorphism
Authors’ contributions
SM: conceived the concept, conducted the analyses, and drafted the
manuscript. GS: conceived the concept, supervised the work, reviewed and
revised the manuscript. All authors have read and approved the manuscript.
Funding
This work was supported by the national Thousand Youth Talents Plan. The
funding body played no role in the design of the study and collection,
analysis, and interpretation of data and in writing the manuscript.
Availability of data and materials
The datasets analyzed during the current study are available at https://www.
internationalgenome.org. The accession number at https://www.ebi.ac.uk/
ena is PRJNA262923.
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Received: 7 October 2019 Accepted: 25 February 2020

References
1. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP,

Hirschhorn JN. Genome-wide association studies for complex traits:
consensus, uncertainty and challenges. Nat Rev Genet. 2008;9(5):356–69.

2. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N,
Gabriel SB, Topol EJ, Smoller JW, Pato CN, Pato MT, Petryshen TL, Kolonel
LN, Lander ES, Sklar P, Henderson B, Hirschhorn JN, Altshuler D. Assessing
the impact of population stratification on genetic association studies. Nat
Genet. 2004;36(4):388–93.

3. Tian C, Gregersen PK, Seldin MF. Accounting for ancestry: population
substructure and genome-wide association studies. Hum Mol Genet. 2008;
17(R2):R143–50.

4. Mathieson I, McVean G. Differential confounding of rare and common
variants in spatially structured populations. Nat Genet. 2012;44(3):243–6.

5. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet. 2006;38(8):904–9.

6. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS
Genet. 2006;2(12):e190.

7. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet. 2007;
81(3):559–75.

8. Pritchard JK, Stephens M, Donnelly P. Inference of population structure
using multilocus genotype data. Genetics. 2000;155(2):945–59.

9. Falush D, Stephens M, Pritchard JK. Inference of population structure using
multilocus genotype data: linked loci and correlated allele frequencies.
Genetics. 2003;164(4):1567–87.

10. Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of
population structure in large SNP data sets. Genetics. 2014;197(2):573–89.

11. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen
MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. A unified
mixed-model method for association mapping that accounts for multiple
levels of relatedness. Nat Genet. 2006;38(2):203–8.

12. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu
J, Arnett DK, Ordovas JM, Buckler ES. Mixed linear model approach adapted
for genome-wide association studies. Nat Genet. 2010;42(4):355–60.

13. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C,
Eskin E. Variance component model to account for sample structure in
genome-wide association studies. Nat Genet. 2010;42(4):348–54.

14. Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms
for genome-wide association studies. Nat Methods. 2014;11(4):407–9.

15. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):
333–51.

16. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A,
Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human
genome variation from population-scale sequencing. Nature. 2010;
467(7319):1061–73.

17. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD,
DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An
integrated map of genetic variation from 1,092 human genomes. Nature.
2012;491(7422):56–65.

18. Baye TM, He H, Ding L, Kurowski BG, Zhang X, Martin LJ. Population
structure analysis using rare and common functional variants. BMC Proc.
2011;5(Suppl 9):S8.

19. Siu H, Jin L, Xiong M. Manifold learning for human population structure
studies. PLoS One. 2012;7(1):e29901.

20. Zhang Y, Guan W, Pan W. Adjustment for population stratification via
principal components in association analysis of rare variants. Genet
Epidemiol. 2013;37(1):99–109.

21. Zhang Y, Shen X, Pan W. Adjusting for population stratification in a fine
scale with principal components and sequencing data. Genet Epidemiol.
2013;37(8):787–801.

22. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.

23. Ma J, Amos CI. Theoretical formulation of principal components analysis to
detect and correct for population stratification. PLoS One. 2010;5(9):e12510.

https://doi.org/10.1186/s12863-020-0833-x
https://doi.org/10.1186/s12863-020-0833-x
https://www.internationalgenome.org
https://www.internationalgenome.org
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena


Ma and Shi BMC Genetics           (2020) 21:34 Page 11 of 11
24. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R1000
Genomes Project Analysis Group. The variant call format and VCFtools.
Bioinformatics. 2011;27(15):2156–8.

25. Wright S. The genetical structure of populations. Ann Eugenics. 1951;15:
323–45.

26. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population
stratification in genome-wide association studies. Nat Rev Genet. 2010;11(7):
459–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Genetic relationship matrix
	Expected genetic relationship matrix
	Rare variants on the eigenvalues
	Rare variants on the population distance
	The 1000 genomes project data

	Results
	Theoretical and empirical EGRMs
	PCAs of the 1000 genomes project data
	PCAs of EGRMs

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

