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Parental warmth interacts with several
genes to affect executive function
components: a genome-wide environment
interaction study
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Abstract

Background: Executive function (EF) is vital to human beings. It has been linked to many genes and family
environmental factors in separate studies, but few studies have examined the potential interactions between
gene(s) and environmental factor(s). The current study explored the whole genome to identify SNPs, genes, and
pathways that interacted with parental warmth (PW) on EF.

Results: Nine EF tasks were used to measure its three components (common EF, updating, shifting) based on the
model proposed by Miyake et al. (2000). We found that rs111605473, LAMP5, SLC4A7, and LRRK1 interacted
significantly with PW to affect the updating component of EF, and the GSE43955 pathway interacted significantly
with PW to affect the common EF component.

Conclusions: The current study is the first to identify genes that interacted with PW to affect EF. Further studies are
needed to reveal the underlying mechanism.
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Background
Executive function (EF) is a set of general-purpose con-
trol processes that regulate thoughts and behaviors [1].
Its neural and genetic bases have been studied exten-
sively. For example, a recent review concluded that the
medial prefrontal and orbital frontal cortices are in-
volved in different aspects of EF, and that genes related
to neurotransmitters (i.e., dopamine, serotonin, norepin-
ephrine, and acetylcholine) modulate functions of these
brain regions and hence contribute to EF [2]. Although
an earlier genome-wide association study (GWAS) failed
to find genome-wide significant results for EF [3], later
GWASs have identified many genes that are associated
with EF measured by various tasks, including CADM2
with the letter-digit or digit-symbol substitution task [4],
DSG1 with the trail making task [5], WDR72 with the D-
KEFS inhibition test [6], RNASE13 with the ADNI-1

neuropsychological battery EF test [7], and B3GNT7 and
NCL with the antisaccade task [8].
Many social/family environmental factors have also

been correlated with EF, such as stressful life events, ma-
ternal substance abuse during pregnancy, family socio-
economic status, parental mental health, parenting prac-
tices, and parental warmth (PW) [9–13]. Harsh parent-
ing was found to be associated with poor EF in children
[10, 13, 14], perhaps because environmental stress acts
through the HPA axis’s activity to influence behavior [9].
Indeed, harsh parenting or low PW has been linked to
higher cortisol response [15] and poorer EF. However,
how parenting or PW specifically interacts with genes to
affect EF is not well understood. Thus far, only two can-
didate gene studies have found that ANKK1 [16] and
COMT [17] interact with parenting to affect children’s
EF. No GWAS, or rather Genome-Wide Environment
Interaction studies (GWEIS), has been conducted on EF.
Following the procedures used in other GWEIS [18–20],
the current study examined how genes (gene sets or

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: zsd@bnu.edu.cn
5Faculty of Education, Beijing Normal University, Beijing, China
Full list of author information is available at the end of the article

Chen et al. BMC Genetics           (2020) 21:11 
https://doi.org/10.1186/s12863-020-0819-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-020-0819-8&domain=pdf
http://orcid.org/0000-0001-8571-8895
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zsd@bnu.edu.cn


genetic pathways) interacted with PW to affect EF. We
adopted the widely used Miyake model of EF with three
components: updating (constant monitoring and rapid
addition / deletion of working memory contents), shift-
ing (switching flexibly between tasks or mental sets), and
common EF [1, 21]. We also used a parental warmth
questionnaire that has been found to interact with genes
to affect decision making [22].

Results
Behavioral performance
Table 1 shows the means and standard deviations (SD)
of all nine EF tasks as well as their bivariate correlations.
As expected, each set of 3 tasks measuring the same
component were highly inter-correlated. In addition, the
antisaccade task was correlated with the 3 updating tasks
and the Stroop task was correlated with the 3 shifting
tasks. These data fit Miyake’s EF model well (Fig. 1),
χ2(21) = 52.738, p < 0.001, RMSEA = 0.033, NFI = 0.935,
IFI = 0.960, TLI = 0.911, CFI = 0.958, all suggesting good
model fit. We thus calculated the component scores
using AMOS for the following gene-environment inter-
action analysis.
Table 1 also shows age and gender differences in task per-

formance. There were age effects on the color-shape and
antisaccade tasks, and gender effects on the letter 3-back,
spatial 2-back, number-letter, and antisaccade tasks. The
shifting component of EF was negatively correlated with
age, and the common EF component showed a gender dif-
ference, with males scoring higher than females. Age and
gender were included as covariates in the following analyses.

GWAS and gene/Geneset enrichment analysis
A principal component analysis (PCA) showed that the
current sample overlapped with East Asian (EAS) and
Han Chinese from the 1000 Genomes data, and clearly
separated this sample from other populations (Fig. 2).
This result suggests that this sample did not have a
population stratification problem.
A whole-genome-by-PW interaction analysis was run for

each of the three EF components. Using the genome-wide
significance threshold (p < 5E-8), only updating had a sig-
nificant interaction effect at rs111605473 (p = 3.208e-08)
(Fig. 3). CC homozygotes showed a negative correlation be-
tween PW and updating, while T allele carriers (TT homo-
zygotes and the heterozygotes) showed positive correlations
(Fig. 4a and Table 2). This SNP is located on an inter-gene
region of chromosome 1, about 50 kb downstream of
SSBP3 and 50 kb upstream of LOC105378735. The other
two EF components did not have genome-wide significant
interaction effects.
Gene level analysis revealed that the LAMP5, SLC4A7,

and LRRK1 genes significantly interacted with PW to
affect updating after FDR correction (Table 3). Although the

interaction effects for the shifting and common EF compo-
nents did not survive FDR correction, the genes with the
most significant results are also included in Table 3. These
interaction effects are shown in Fig. 4b-f and Table 2 using
the most significant SNP within each gene. AA homozy-
gotes of rs4813892 within LAMP5, AG heterozygotes of
rs6775176 within SLC4A7, and TT homozygotes of
rs11636291 within LRRK1 showed significant positive corre-
lations between updating and PW, but the other genotype
groups showed no significant correlations. AA homozygotes
of rs815802 within CALM2 showed a positive correlation
between PW and shifting, while AG heterozygotes and GG
homozygotes showed a negative correlation. AA and AC
groups of rs2072535 within FEZ2 showed a positive correl-
ation between PW and the common EF component, but CC
homozygotes did not show a significant correlation.
All these top SNPs are intronic. A search in the BrainSeq

database (http://eqtl.brainseq.org/phase1/eqtl/) showed that
rs6775176 is strongly associated with transcripts of NEK10
(minimum p = 7.5E-5, just 3 kb away from SLC4A7), with
GG homozygotes showing the highest level of expression.
SNP rs815802 is strongly associated with transcripts of
CALM2 (minimum p = 3.1E-9), with AA homozygotes
showing the highest level of expression. SNP rs2072535 is
strongly associated with transcripts of FEZ2 (minimum p =
4.0E-27), with AA homozygotes showing the highest level
of expression.
Pathway level analysis showed that one pathway had a

significant interaction with PW to affect the common EF
component after FDR correction (p = 2.08E-06). This
pathway is involved in the immunologic system, consisted
of 186 genes (http://www.broadinstitute.org/gsea/msigdb/
cards/GSE43955_TH0_VS_TGFB_IL6_TH17_ACT_CD4_
TCELL_60H_DN). We refer to this pathway as GSE43955
hereafter. To demonstrate this interaction effect, a gene
score of this pathway was calculated. Genes within this
pathway with nominal interaction effects (p < 0.05) were
identified, and the most significant SNP within each gene
was selected. The gene score was calculated by multiply-
ing genotype (coded as 0/1/2 in terms of the number of
copies of the minor allele) of these significant SNPs with
their corresponding effect sizes (beta of the interaction
term in PLINK results) and then summing them up. Par-
ticipants were then equally divided into low, middle, and
high gene score groups to illustrate the interaction effect.
The low gene score group showed a significant negative
correlation between PW and EF, the middle gene score
group showed a marginally positive correlation, while the
high gene score group showed a very significant positive
correlation (Fig. 4g and Table 2).

Discussion
This study confirmed the EF model proposed by Miyake
and Friedman [1, 21, 23] with the extraction of three EF

Chen et al. BMC Genetics           (2020) 21:11 Page 2 of 11

http://eqtl.brainseq.org/phase1/eqtl/
http://www.broadinstitute.org/gsea/msigdb/cards/GSE43955_TH0_VS_TGFB_IL6_TH17_ACT_CD4_TCELL_60H_DN
http://www.broadinstitute.org/gsea/msigdb/cards/GSE43955_TH0_VS_TGFB_IL6_TH17_ACT_CD4_TCELL_60H_DN
http://www.broadinstitute.org/gsea/msigdb/cards/GSE43955_TH0_VS_TGFB_IL6_TH17_ACT_CD4_TCELL_60H_DN


Ta
b
le

1
D
es
cr
ip
tiv
e
st
at
is
tic
s
an
d
bi
va
ria
te

co
rr
el
at
io
ns

of
th
e
m
ai
n
st
ud

y
va
ria
bl
es

Le
tt
er

3-
ba
ck

Ke
ep

tr
ac
k

Sp
at
ia
l2
-b
ac
k

C
ol
or

sh
ap
e

N
um

be
r

le
tt
er

C
at
eg

or
y
sw

itc
h

A
nt
i

sa
cc
ad
e

St
ro
op

St
op

si
gn

al
U
pd

at
in
g

Sh
ift
in
g

C
om

m
on

M
ea
n

0.
80

30
.7
9

0.
90

0.
25

0.
24

0.
26

0.
74

0.
13

19
5.
39

0.
42

0.
21

0.
58

SD
0.
11

3.
13

0.
09

0.
17

0.
15

0.
12

0.
14

0.
08

55
.9
1

0.
06

0.
07

0.
07

C
or
re
la
tio

n
w
ith

A
ge

(r)
−
0.
05

-4
E-
3

1E
-3

−
0.
07

*
−
0.
05

−
0.
04

−
0.
07

*
0.
02

0.
08

*
−
0.
03

−
0.
08

**
−
0.
06

G
en

de
r
di
ffe
re
nc
e
(T
)

2.
43

*
0.
52

3.
34

**
*

−
0.
96

−
2.
88

**
−
0.
60

6.
54

**
*

0.
18

0.
41

0.
79

−
1.
57

6.
52

**
*

Bi
va
ria
te

co
rr
el
at
io
ns

Le
tt
er

3-
ba
ck

0.
96

**
−
0.
03

0.
51

**

Ke
ep

tr
ac
k

.2
5*

**
0.
27

**
−
0.
06

0.
34

**

Sp
at
ia
l2
-b
ac
k

.3
4*

**
.1
5*

**
0.
33

**
−
0.
04

0.
56

**

C
ol
or
-s
ha
pe

−
.0
3

−
.0
1

−
.0
7*

−
0.
04

0.
74

**
−
0.
05

N
um

be
r-
le
tt
er

−
.0
6*

−
.0
8*

*
−
.0
6*

.3
3*

**
2E
-3

0.
79

**
−
0.
22

**

C
at
eg

or
y
sw

itc
h

−
.0
9*

*
−
.0
5

−
.0
8*

*
.2
6*

**
.2
9*

**
−
0.
04

0.
63

**
−
0.
19

**

A
nt
is
ac
ca
de

.2
7*

**
.1
6*

**
.2
7*

**
.0
3

−
.0
9*

**
−
.0
8*

*
−
0.
04

0.
03

0.
90

**

St
ro
op

−
.0
2

.0
2

−
.0
8*

*
.1
1*

**
.1
1*

**
.0
8*

*
−
.1
1*

**
0.
05

0.
11

**
−
0.
23

**

St
op

si
gn

al
−
.0
5

−
.0
7*

−
.0
6*

.0
6

−
.0
1

−
.0
1

−
.1
1*

**
.0
6*

−
0.
06

−
0.
03

−
0.
15

**

N
ot
e:

*
p
<
0.
05

,*
*
p
<
0.
01

,*
**

p
<
0.
00

1

Chen et al. BMC Genetics           (2020) 21:11 Page 3 of 11



components (i.e., the common, updating, and shifting
components) and identified SNPs, genes, and a pathway
that interacted with PW to affect these components.
Parenting behaviors have been found to interact with

genes to affect human traits like creativity [24], depres-
sion [25], aggression [26], externalizing behavior [27],
self-control [28], as well as EF [16, 17]. Researchers have
proposed that parenting behaviors likely influence the
way children cope with stress, resulting in epigenetic
changes in the HPA axis such as glucocorticoid receptor
expression [29] or in the neurotransmitter systems such
as dopamine, oxytocin, and serotonin [30]. All these

studies, however, used only candidate genes. To the best
of our knowledge, the current study is the first to search
for interaction effects between PW using the whole gen-
ome. We found genes related to neural growth and func-
tion and the immunologic system that interacted with
PW to affect EF.
Specifically, we found that rs111605473 significantly

interacted with PW to affect updating. This SNP is lo-
cated downstream of SSBP3, and hence possibly modu-
lates the function of this gene. SSBP3 can bind to DNA
and regulate transcription, and has been found to regu-
late mouse embryonic stem cells differentiating into

Fig. 1 Confirmatory factor analysis of the componential executive function model

Fig. 2 Projection of the current study samples onto the first two principal components inferred from the 1000 Genomes Project’s phase3
populations. The current study sample overlapped with East Asian (EAS) and Han Chinese populations
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Fig. 3 Manhattan plot of genome-wide interaction with PW for updating. Each dot represents the p value of a SNP-by-PW interaction. X axis
shows the chromosomal positions of the SNPs, and Y axis shows –log10 transformed interaction p values. The dashed line represents p = 5E-8.
Only one SNP at chromosome 1 survived this genome-wide significance threshold

Fig. 4 Interaction effects of representative SNPs listed in Table 2. The X axis represents PW and the Y axis represents EF components with age,
gender, and first two principal components of genome regressed out, to keep consistent with GWEIS analysis. Each subplot A-G showed one
interaction effect presented in Table 2, correlations between EF and PW are shown for different genotype groups
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trophoblast-like cells [31]. It is possible that this gene in-
teracts with parenting behavior during early develop-
ment and hence influences later EF. It is also possible
that rs111605473 simply tags some other causal SNPs/
genes in this region.
We found that LAMP5, SLC4A7, and LRRK1 interacted

with PW to affect updating. LAMP5 is extensively
expressed in mouse brain, can alter short term synaptic
plasticity, and is involved in GABAergic transmission [32].
This is consistent with the facts that dynamic synaptic
plasticity is vital for working memory (i.e., updating) [33]
and that GABAergic interneurons in the prefrontal cortex
are involved in EF [2]. SLC4A7 has been associated with
breast cancer and hypertension, but also has been pro-
posed to influence neurotransmitter in the brain [34] and
EF [2]. LRRK1 is extensively expressed in human brain, es-
pecially in the hippocampus [35], and has been found to
be a risk gene for Parkinson’s disease [36], suggesting the
possibility that LRRK1 acts on the function of the hippo-
campus to influence working memory and contributes to
EF deficit associated with Parkinson’s disease.
The genes that showed the most significant interactions

with PW to affect shifting and the common component of
EF were CALM2 and FEZ2, although they did not survive
FDR correction. Both genes are expressed extensively in
human brain. CALM2 belongs to the calmodulin gene
family. Calmodulin is a calcium binding protein found
mainly in the central nervous system and is involved in
signaling pathway and neuronal cell death [37]. FEZ2 is
important for axonal bundling and elongation.

In summary, all these genes have been linked to the
nervous system although their function on cognition has
seldom been tested. According to the BrainSeq database,
the most significant SNPs within SLC4A7, CALM2, and
FEZ2 are shown to be relevant to their respective genes’
expression (in the case of the SNP for SLC4A7, it is rele-
vant to the expression of the neighboring gene NEK10).
The current study found that these genes interacted with
PW to affect EF. It is likely that PW as an environmental
factor can modulate these genes’ expression through
some epigenetic processes. These interactions may also
reflect genotypic differential susceptibility (i.e., individ-
uals with certain genotypes are more susceptible to en-
vironmental influences [38, 39]). Further studies are
needed to explicate the mechanisms involved.
Finally, we found that the GSE43955 pathway had a sig-

nificant interaction with PW to affect the common EF
component, although this pathway did not contain the sig-
nificant SNPs/genes discussed above. This is perhaps due
to the fact that many SNPs or genes have small effects that
are not detectable at the SNP or gene level, but whose cu-
mulative effect is robust and evident at the pathway level.
This pathway contains the most often reported EF-related
gene, the APOE. This gene had often been found to be as-
sociated with some aspects of cognition and brain disor-
ders (i.e., Alzheimer’s disease). Our results suggest this
gene and other immunologic genes may interact with PW
together (i.e., gene score) to affect EF.
The sample size of the current study needs to be dis-

cussed. The sample size was not very large compared to

Table 3 Genes that showed most significant interactions with PW to affect EF components

EF components GENE CHR START STOP ZSTAT Gene P Top SNP

Updating LAMP5 20 9,495,005 9,511,171 4.3928 5.6E-06 rs4813892

SLC4A7 3 27,414,212 27,525,911 4.2862 9.09E-06 rs6775176

LRRK1 15 101,459,460 101,610,317 4.258 1.03E-05 rs11636291

Shifting CALM2 2 47,387,221 47,404,229 3.8548 5.79E-05 rs815802

Common FEZ2 2 36,779,397 36,825,333 4.4018 5.37E-06 rs2072535

Note: Genes for updating survived FDR correction and are shown in bold

Table 2 Correlations between EF and PW for each genotype group based on the representative SNPs

SNPs EF genotype r p n genotype r p n genotype r p n

rs111605473 Updating CC −0.11 0.015 522 CT 0.18 2.8E-04 405 TT 0.40 4.0E-04 75

LAMP5(rs4813892) Updating AA 0.22 3.0E-05 353 AC 3.0E-03 0.956 484 CC −0.15 0.056 165

SLC4A7(rs6775176) Updating GG −0.01 0.796 904 AG 0.50 1.8E-07 96 AA -a -a 2

LRRK1(rs11636291) Updating TT 0.29 6.7E-07 282 GT −0.02 0.674 502 GG −0.09 0.18 218

CALM2(rs815802) Shifting AA 0.09 0.020 727 AG −0.17 0.005 257 GG −0.52 0.028 18

FEZ2(rs2072535) Common CC −0.01 0.909 417 AC 0.13 0.004 453 AA 0.42 5.6E-07 132

GSE43955 score Common low −0.13 0.019 335 mid 0.11 0.054 333 high 0.38 5.6E-13 334

Note: Each row shows the details of a significant interaction (for a specific SNP and an EF component). A correlation (and associated p value and sample size) is
shown for each genotype (in the order of major allele homozygotes, heterozygotes, and minor allele homozygotes, see each row for specific alleles)
a not calculated because of only 2 participants
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that of recently published GWAS studies. Nevertheless,
our study had enough power to detect moderate effects.
Specifically, we did a power analysis using Gpower 3.1
[40]. We used F tests to test increased R2 by the inter-
action term in linear multiple regression, as modeled in
PLINK. The effect size is defined as f2 = VS/VE, where
VS is the proportion of variance explained by the inter-
action term, and VE is the error variance. The effect size
of rs111605473-by-PW interaction was 0.03, so the
power of finding this effect with a sample size of 1002 at
α < 1E-7 (the minimum value Gpower can accept) was
0.59, and at the nominal α < 0.01 level the power was
0.99. Since MAGMA did not report effect sizes, we did a
power analysis with the gene score of the significant
gene set GSE43955. The effect size was 0.06, which was
higher than those of single SNPs, as would be expected.
The power at α < 1E-7 was 0.99, and that at α < 0.01 was
1. In conclusion, our sample size was sufficient to cap-
ture moderate gene-environment interactions, especially
at the gene or pathway level.
Several limitations of the current study need to be

mentioned. First, this study enrolled only healthy Chin-
ese college students, whose results may not generalize to
other populations or to samples with disorders. Second,
our measure of environment (PW) was based on partici-
pants’ reports, which are subject to reporting biases. Fu-
ture research should consider objective measures or at
least an independent assessment by observers. Finally,
the current study only revealed associations among
genes, the environmental factor of PW, and EF. Further
studies need to determine their causal relations and in-
vestigate the relevant biological mechanisms.

Conclusions
In summary, the current study measured EF based on a
reliable and widely accepted 3-component model, and
found that rs111605473, LAMP5, SLC4A7, and LRRK1
interacted significantly with PW to affect the updating
component of EF, and that the GSE43955 pathway inter-
acted significantly with PW to affect the common com-
ponent of EF. In addition, CALM2 and FEZ2 interacted
with PW to affect the shifting and common components,
albeit at a lower level of significance. These results sug-
gest that parenting’s effects on cognitive development
may depend on the genetic makeup of the children. The
specific mechanisms involved, however, need further
investigation.

Methods
Participants
We enrolled healthy Chinese college students from
Beijing Normal University in Beijing, China, and South-
west University in Chongqing, China. One thousand
three hundred ninety-one participants (529 male and

862 female, age = 20.2+/− 1.8 years) completed the be-
havioral tests. One thousand two of them (401 male and
601 female, age = 20.4+/− 1.9 years) were genotyped. All
participants were Han Chinese and reported no history
of psychiatric diseases, head injuries, or stroke/seizure.
Participants were paid for their participation.

Behavioral measures
Parental warmth (PW)
Parental Warmth and Acceptance Scale [41] measures
perceived parental warmth with 11 items, such as “My
parents really understand me” and “My parents like me
the way I am; they don’t try to ‘make me over’ into
someone else”. Participants rated each item on a 6-point
scale, 1 = “Disagree strongly” to 6 = “Agree strongly”.
The total score of all items was used for analysis.

Executive function (EF)
Following the model of Miyake et al. [1, 21, 42], the
current study used 9 EF tasks that were used in one of
their original studies [21], with some modification in
terms of materials or presentation parameters. These
nine tasks measure the three latent components of EF:
the keep track, letter 3-back, and spatial 2-back tasks
were used to assess updating; the number-letter, color-
shape, and category switch tasks were used to assess
shifting, and all nine tasks (the above six plus the anti-
saccade, stop signal, and Stroop tasks) were used to assess
the common EF component [1] (Fig. 1). We also used the
same outcome index for each task as in Miyake’s model.
A brief description of each task appears below.

Keep track A list of 15 words were presented in the
center of the screen one by one for 1.5 s each. The
words belong to several categories and were presented
in random order. Subjects had to memorize the last pre-
sented word of each category and write them down after
the presentation. Six categories were used, including ani-
mals, colors, countries, distances, metals, and relatives.
Twelve word lists were tested, with 4 lists containing
words of 2 categories, 4 containing 3 categories, and 4
containing 4 categories. The total number of words cor-
rectly written down was used.

Letter 3-back A sequence of 13 single letters were pre-
sented on the screen one by one, shown for 750 ms,
followed by a blank screen of 2250 ms. Subjects had to
memorize the latest 3 letters and judge if the current let-
ter was the same as the one presented 3 items before.
Subjects had to make response within 3 s as accurately
and fast as possible. The whole task included 6 se-
quences. The overall accuracy of the 6 sequences was
used. Before the formal test, subjects were given a prac-
tice session to familiarize themselves with the task.
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Practice ended if the subjects achieved an accuracy
higher than 0.7 or practiced for 3 sequences, whichever
came first, to avoid over-training.

Spatial 2-back A sequence of 12 squares were presented
one by one on the screen at random positions. Each
square was presented for 0.5 s with an interval of 1.5 s
between 2 squares. Subjects had to memorize the posi-
tions of the last two squares and judge if the current
square was at the same position as the one 2 items be-
fore, and a response was required within 2 s. The whole
task included 4 sequences. The overall accuracy was
used. Before the formal test, subjects were given a prac-
tice session. Practice ended if the subjects achieved an
accuracy higher than 0.7 or practiced for 3 sequences,
whichever came first, to avoid over-training.

Number-letter A number-letter pair (e.g. 7G) was
shown in a rectangle on the screen. If the pair appeared
on the upper side of the screen, participants judged if
the number was odd or even by key pressing. If the pair
appeared on the lower side, participants judged if the
letter was a consonant or a vowel. Subjects had to re-
spond as fast and accurately as possible. The stimuli dis-
appeared immediately after the response. Stimuli were
presented in pseudorandom order, resulting in equal
numbers of trials with the same judgment task as the
trial before it (the repeat condition) or with a different
judgment task (the switch condition). Response time of
the switch condition minus that of the repeat condition
was used.

Color-shape This task was similar to the number-letter
task, but with different stimuli. A red or green circle or
triangle was presented in the center of the screen, with a
cue on top indicating whether participants should make
judgment by color or by shape. Stimuli were also pre-
sented in pseudorandom order to ensure an equal num-
ber of repeat and switch trials. The response time
difference between the two conditions was used.

Category switch Similar to the number-letter task, a
two-character Chinese word (i.e.,钥匙, key) was presented
in the center of the screen, with a cue on top it. Partici-
pants had to judge according to the cue if the word de-
scribes a living or nonliving object, or if it is larger or
smaller than a shoe case. Trials were presented in pseudo-
random order to ensure an equal number of repeat and
switch trials. The response time difference was used.

Antisaccade A fixation “+” was presented for a duration
randomly drawn from nine durations between 1.5 and
3.5 s in 0.25 s interval, followed by a 0.32 cm black
square cue presented for 0.15 s on one side of the screen.

Then a target of a 0.79 cm arrow within a 1.11 cm
square was presented on the other side of the screen for
0.175 s and then masked by a grey square. Subjects had
to control their attention not to the cue but to the target
to identify the direction of the arrow by key pressing
(left, up, right). Subjects practiced on 22 trials to learn
the task, followed by 90 test trials. Accuracy of these 90
trials was used.

Stop signal Participants were asked to press left or right
button according to an arrow presented in the center
of the screen for 1 s as accurately and quickly as pos-
sible (go trials). On 25% of trials, a red circle ap-
peared around the arrow following the presentation
of the arrow, participants had to withhold their re-
sponse (nogo trials). This delay between the onset of
the red circle and the arrow was adaptive based on
task performance with an aim of 50% success at inhi-
biting responses during the nogo trials. The task con-
sisted of 4 blocks, each with 64 trials. Stop-signal
reaction time (SSRT) was calculated as the median re-
sponse time of the go trials minus the mean delay of
the nogo trials, using only trials with correct re-
sponses within the last two blocks.

Stroop We adopted the classical Stroop task with 4
Chinese color words 红 (red), 绿 (green), 黄 (yellow),
and 蓝 (blue). Each word was presented either in the
color of the word’s meaning (i.e. the word “red” pre-
sented in red) under the congruent condition or in one
of the other 3 colors (e.g., the word “red” presented in
green) under the incongruent condition. Each condition
had 12 trials, resulting in (12 congruent + 12 incongru-
ent)*4 words = 96 trials, which were presented in random
order. For each trial, a word was presented in the center
of the screen, and participants had to respond to the
printed color by pressing one of four keys as fast and ac-
curately as possible. The response time difference between
the two conditions was used as an index of inhibition. To
make sure participants were familiar with the color-key
association, they were first given a practice session, in
which a color square was presented at the center of the
screen and participants had to press a corresponding key
quickly. The practice session ended when participants
obtained an accuracy rate higher than 70%.

Genotyping
1-2μg genome DNA (gDNA) was extracted from 250ul
blood using Axypre Blood Genomic DNA Kit (Corning
Life Sciences cat.no.11313KC3). The concentration of all
gDNA was quantified with the Qubit2.0 Fluorometer (Life
Technologies, cat. no. Q32866) and the Qubit dsDNA HS
Assay Kit (Life Technologies, cat. no. Q32854). Six hun-
dred twenty-nine samples were genotyped on the Infinium
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Human Omni-Zhonghua-8 chips, 239 samples were geno-
typed on the Infinium Human Omni2.5–8 exome chips,
and 134 were genotyped on Infinium OminiExpress-12
chips (Illumina, San Diego, CA, USA), all according to the
manufacturer’s specifications. Genotyping module of Gen-
ome studio v3.0 (Illumina, San Diego, CA, USA) was used
to call the genotypes based on the fluorescent signal with
standard cluster algorithm. Samples with call rate less
than 98% (4 samples, with genotype call threshold of 0.15)
were re-genotyped thus all passed this threshold in the
final dataset. Further data cleaning was performed separ-
ately for each kind of chips, using PLINK2 (https://www.
cog-genomics.org/plink/1.9/) [43, 44]: SNPs with missing
data on more than 5% samples, or HWE p < 1E-6, or
MAF < 0.01, were excluded, and subjects missing more
than 5% SNPs were discarded too (no subjects were ex-
cluded by this threshold).
Autosome genotypes of 3 chips were then imputed separ-

ately using Michigan Imputation Server (https://imputation-
serer.sph.umich.edu/index.html) following their protocol: (1)
HRC tools (www.well.ox.ac.uk/~wrayner/tools) were used to
check strand and to flip to forward strand when ne-
cessary; (2) data were transformed to VCF files and
sorted for each chromosome; (3) data were uploaded
to the server, and imputed using 1000G Phase 3 EAS
population as reference. Imputed data were cleaned
using home-made codes, only SNPs with imputation
quality r2 > 0.8 and MAF > 0.05 were retained. Then
these datasets were merged and cleaned again (MAF >
0.05, HWE > 1E-6), retaining 4,856,474 SNPs. No du-
plicated or related subjects were identified (maximum
PI_HAT = 0.0537, calculated with PLINK2).
To estimate the ancestry of our sample and determine

whether we had a potential population stratification prob-
lem, we ran a principal component analysis on the 1000
Genomes Project’s data and projected our sample to the
first two principal components using EIGENSTRAT soft-
ware [45]. The 1000 Genomes Project’s phase3 data were
downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/, converted into Plink format, com-
bined with the current dataset. Overlapping SNPs were
retained, cleaned with standard criteria (−-geno 0.05 --maf
0.02 --hwe 1e-6), pruned considering the EAS population
(plink pruning: --indep-pairwise 200 5 0.25). Ambiguous
strand SNPs were removed (AT or CG). A total of 105,
831 SNPs remained for this analysis.
To further explore possible biological mechanism of

the SNPs that showed the most significant results, we
searched the BrainSeq Consortium database (http://eqtl.
brainseq.org/phase1/eqtl/) for gene expression informa-
tion. BrainSeq provides information about the associa-
tions between genotypes and RNA sequencing data
collected from postmortem DLPFC tissues of 175
schizophrenia patients and 237 controls.

Experimental procedure
The current study is part of a larger project that in-
cluded extensive measures of executive function, deci-
sion making, memory, personality, and wellbeing. Tasks
of different domains were interleaved and participants
finished all tasks in the same order. It took about 4 h (2
h in the morning and 2 h in the afternoon) to complete
all the tasks. To reduce the habituation and fatigue ef-
fects, each task was designed to be about 10 min long
and if they would like to, participants were allowed to
take a break after each task. A mandatory break was
enforced after each hour. Blood sample were collected
after the morning session and before lunch.

Statistical analysis
Behavioral indices of the EF tasks were calculated.
Values outside of 3 standard deviations for each index
were treated as missing data. Latent EF components
were modeled with IBM SPSS AMOS 22 using a nested
factors model [21, 23]. That is, all nine tasks were used
to define a common EF component; the keep tract, letter
3-back, and spatial 2-back tasks were used to extract the
updating component; and the number-letter, color-
shape, and category switch tasks were used to extract
the shifting component.
Genome-wide environment interaction analysis was

run using Plink2 linear regression, using each EF com-
ponent as the dependent variable; PW, genotype and
their interaction as independent variables; and age, gender,
and first two principal components of the genome as co-
variates. Interaction p values from Plink2 were inputted to
MAGMA [46] for gene-set enrichment analysis. Gene
definition was downloaded from the MAGMA website
(https://ctg.cncr.nl/software/magma), using the NCBI37.3
version, resulting in 17,287 genes. The sum of –log(p)
within a gene was calculated as the gene-level statistics
(MAGMA default model). Seventeen thousand seven
hundred seventy-nine gene sets from msigdb.v6.0 (http://
software.broadinstitute.org/gsea/msigdb/) were used for
pathway enrichment analysis. FDR correction was applied
to the selection of significant genes and pathways.
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