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Abstract

Background: The identification of lines resistant to ear diseases is of great importance in maize breeding because
such diseases directly interfere with kernel quality and yield. Among these diseases, ear rot disease is widely
relevant due to significant decrease in grain yield. Ear rot may be caused by the fungus Stenocarpella maydi;
however, little information about genetic resistance to this pathogen is available in maize, mainly related to
candidate genes in genome. In order to exploit this genome information we used 23.154 Dart-seq markers in 238
lines and apply genome-wide selection to select resistance genotypes. We divide the lines into clusters to identify
groups related to resistance to Stenocarpella maydi and use Bayesian stochastic search variable approach and
rr-BLUP methods to comparate their selection results.

Results: Through a principal component analysis (PCA) and hierarchical clustering, it was observed that the three
main genetic groups (Stiff Stalk Synthetic, Non-Stiff Stalk Synthetic and Tropical) were clustered in a consistent
manner, and information on the resistance sources could be obtained according to the line of origin where
populations derived from genetic subgroup Suwan presenting higher levels of resistance. The ridge regression best
linear unbiased prediction (rr-BLUP) and Bayesian stochastic search variable (BSSV) models presented equivalent
abilities regarding predictive processes.

Conclusion: Our work showed that is possible to select maize lines presenting a high resistance to Stenocarpella
maydis. This claim is based on the acceptable level of predictive accuracy obtained by Genome-wide Selection
(GWS) using different models. Furthermore, the lines related to background Suwan present a higher level of resistance
than lines related to other groups.
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Background
Throughout its evolution, maize has undergone an in-
tensive domestication process and concurrently it has
presented particular susceptibility to certain pathogenic
microorganisms that directly influence kernel produc-
tion and quality, such as Stenocarpella maydis, which is
a fungus responsible for rot in ears and kernels and
causes a disease known as ear rot.

In addition, to losses in yield, the nutritional and
economic values of the kernels may be depreciated
because of mycotoxins known as diplodiatoxins, which
may compromise the final feed quality and could be toxic
to birds and cattle [26]. The association of the fungus S.
maydis with corn seeds may also substantially compromise
germination and seedling vigor [34].
The harmful economic impact of this disease increases

every year and is driven by increases in the use of irri-
gated areas as well as by the use of no-tillage systems.
These factors contribute to the propagation and survival
of S. maydis in farming areas because of its necrotrophic
nature. Moreover, ear rot occurs in both tropical and
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temperate regions; thus, it is a disease of global im-
portance [4, 36].
Certain agronomic practices have been suggested to

reduce S. maydis inoculum, such as crop rotation, sow-
ing healthy seeds, planting at the recommended density,
and using resistant cultivars [7]. According to these Casa
et al. [7], crop rotation has been adopted because the
microorganism can survive as a saprophyte in maize
residue over harvest intervals of up to 320 days. The effi-
cacy of chemical control of this disease is still debatable,
although studies are showing an increase of up to 12 %
in kernel yield upon implementation of this practice [6].
Among the strategies to control infestations of ear rot,
genetically resistant plants are considered to be low-cost
alternatives that have high effectiveness and no environ-
mental impact [1].
Despite the clear advantage of plant breeding to obtain

resistant genotypes, there is a considerable lack of resist-
ant cultivars. Therefore, breeding programs from public
and private institutions must work intensively to obtain
cultivars resistant to S. maydis.
Plant breeding used to target resistance to ear rot is

usually performed using traditional phenotypic analysis
methods, with data obtained in studies conducted in en-
vironments with high disease pressure. Evaluations of
this disease are performed via secondary traits that may
be used effectively in the selection of plants resistant to
S. maydis, such as in the percentage of rotten ears and
cobs and tilting of ears in the plant [33]. In practice,
mass phenotypic selection is generally applied in early
generations, but this practice is not efficient, which is
possible because of low trait heritability and high envir-
onment interactions [28].
In addition to phenotypic selection, the identification

of quantitative trait loci (QTLs) and the application of
marker-assisted selection (MAS) practices [36] are also
common in breeding programs. The MAS, based on
QTL mapping take into account the gene identification
in disequilibrium with molecular markers in structured
populations [2, 29]. However, despite initially high expec-
tations, few highly relevant results have been obtained
from the use of this technique [11, 20].
An efficient alternative to mitigating certain limita-

tions of MAS was suggested by Meuwissen et al. [25].
The proposed method is popularly known as genomic
selection (GS) and based on the massive use of molecu-
lar markers distributed throughout the genome. Because
of the high level of linkage disequilibrium between the
marker and QTL, this method does not require structured
populations [11, 16].
The statistical models to be adopted in Genomic Se-

lection (GS) greatly depend on the genetic architecture to
be studied. In general, infinitesimal models, such as gen-
omic and ridge regression best linear unbiased prediction

(GBLUP and rrBLUP, respectively), have a good predictive
power and can adequately describe the genetic architec-
ture in infinitesimal models [19]. The infinitesimal model
is widely accepted in quantitative genetics, although its ap-
plication in molecular genetics is still very discussed, and
although several genes have been observed, the infinitesi-
mal assumption may still be strong [14, 24]. The infinitesi-
mal assumption claims that individual genotype is based
on the sum of infinitesimal independent locus acting addi-
tively on the trait and presenting Gaussian properties;
therefore, it is founded in the central limit theorem. Thus,
Bayesian models may be more efficient for describing the
genetic architecture when several (but don’t infinitesimal)
genes control the trait because they present a polygenic
profile and high resolution in the identification of large-
effect genes [11, 15].
Because of the scarcity of information available on the

genetic mechanisms of resistance to ear rot and lack of
studies to identify genomic regions involved in resistance
to S. maydis, the objectives of this work are: (i) evaluate
the usefulness of GS in the selection of genotypes resist-
ant to S. maydis; (ii) compare the rrBLUP and Bayesian
stochastic search variable (BSSV) selection methods in
terms of the selection (iv) genetically characterize the
germplasm bank of the Federal University of Lavras for
resistance to ear rot.

Results
Genetic germplasm characterization through a principal
component analysis
The genomic relationships among the lines obtained by
23,154 Dart-seq markers were submitted to spectral de-
composition. In total, it was observed 6 % of missing
data point and it were imputed using the EM approach
by A.mat function in rr-BLUP library deleting markers
presenting more than 90 % of missing data. The inbred
lines were clustered into distinct genetic groups through
a Principal Component Analysis (PCA) analysis based
on the relationship data. This approach was effective in
the clustering of our genetic background even explained
just 15.24 % of the genomic additive matrix (Fig. 1).
A clear distinction between the tropical genetic sub-

groups Suwan, Amarillo Dent, Tropical Flint and Trop-
ical Dent may be observed in the left lower corner of
Fig. 1. The colors reflect the empirical knowledge of the
breeder about the germplasm and its position after
clustering. This figure clearly shows a pyramid-shaped
cluster, which includes the three most important groups
used in the breeding program. The somewhat overlapping
temperate subgroups Iodent, Lancaster, Non-Stiff Stalk
Synthetic (NSSS), NSS-PG84, M-NK-ARG and F-DK-
ARG are highlighted in the upper vertex of the pyramid
and grouped separately from the lines of tropical ori-
gin. The Stiff Stalk Synthetic (SSS) group was derived
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from crosses of lines B73 and B17 with other lines and
allocated in the right lower vertex of the biplot, thus
representing a cluster distant from the lines of temperate
origin, which was expected because of the known high
heterotic pattern between these two genetic groups. In the
center, it is possible to observe the genetic group F-DK-
ARG, and this spatial pattern suggests that the lines be-
longing to this group were derived from a pool between
temperate germplasm. The genetic groups defined by the
hierarchical clustering method confirm the results ob-
tained in the PCA analysis (Fig. 2). For example, sub-
groups Amarillo Dent, Tropical Flint and Suwan, which
were clustered in the tropical genetic group in the PCA,
were also similarly differentiated from the NSSS and SSS
groups by the hierarchical clustering technique.

Genomic prediction and comparison between ERIS, PRK
and NESR
Among the disease evaluation methods used here,
markers with a non-null effect were not observed for the
number of ears with symptoms of rot (NESR) trait; thus,
when the BSSV approach was used, the ρ mixing param-
eter was estimated with a probability close to one. Based
on the sample information, this result suggests that the
probability of identifying genes with effects different
from zero is negligible for this trait.

For the percentage of rotten kernels (PRK) and Ear
Rot Incidence Score (ERIS) traits, the ρ mixing parameter
values of the BSSV model were 0.37 and 0.32, respectively.
This result suggests the presence of sufficient sample in-
formation for the identification of genes with probabilities
different from zero. Therefore, cross-validation analyses
were performed for PRK and ERIS only using the rrBLUP
and BSSV methods.
As shown in Table 1, using the PRK trait provided clear

advantages for both the rrBLUP and BSSV methods com-
pared with the ERIS.
The PRK trait provides a higher predictive power when

we use the predicted breeding values obtained from the
training population (n-k) and the observed breeding value
from full data (n) i.e., r2 = 0.878 and r2 = 0.874 for rr-BLUP
and SSVS respectively. That is approximately 10.84 %
(rrBLUP) and 10.96 % (BSSV) higher compared with the
ERIS trait. On the other hand, when we used the predict-
ive ability as a measure of accuracy based on phenotypic
values, it was not so high, ranging from 0.241 to 0.569
(Table 2). It was roughly 31 % lower than predictions
based on breeding value for PKH and 40 % for ERIS. This
difference in prediction is because the phenotypic values
include residual variance and in this situations the accur-
acy threshold is linked to the heritability (h2 = 0.648 for
PKH and 0.265 for ERIS). In general, the rr-BLUP and

Fig. 1 Genetic clustering of inbred lines from the germplasm bank of the Department of Agriculture of UFLA using a principal component analysis
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BSSV were equivalent in the prediction of the Genomic
Breeding Values GBVs for both traits.
This result suggests that GBVs may be predicted with

high accuracy for the selection of lines resistant to S.
maydis but, only a moderate accuracy was obtained in
the prediction of phenotypic values.

Germplasm sources of resistance to S. maydis
Following the genomic analysis and calculation of GBVs
via rrBLUP and BSSV, 10 % of the most resistant and
susceptible inbred lines were classified based on pre-
dicted values. The highest proportion of lines resistant
to S. maydis was allocated to the Suwan genetic group

Fig. 2 Hierarchical clustering of the inbred lines from the germplasm bank of the Department of Agriculture of UFLA using the Euclidean
distance of the elements of relationship matrix A

Table 1 Model performance based on coefficient of determination between individual predicted genomic breeding values and
observed breeding values obtained through cross-validation using the rrBLUP and BSSV methods by phenotyping per proportion of
rotten kernels (PRK) and ear rot incidence score (ERIS)

r2
ŷp ; Zâð Þ (T1)

r2
ŷp ; Zâð Þ (T2) r2

ŷp ; Zâð Þ (T3) r2
ŷp ; Zâð Þ (T4) r2

ŷp ; Zâð Þ (T5) Mean

PRK rrBLUP 0.846 0.767 0.905 0.931 0.900 0.878 (0.065)

BSSV 0.887 0.804 0.835 0.950 0.893 0.874 (0.056)

ERIS rrBLUP 0.861 0.664 0.588 0.759 0.627 0.699 (0.110)

BSSV 0.729 0.764 0.664 0.629 0.680 0.693 (0.053)

r2
ŷp ; Zâð Þ coefficient of determination between the predicted breeding value ŷp and observed breeding value Za obtained in the cross-validation; T1, T2, T3, T4 and

T5 are the training populations 1, 2, 3, 4 and 5, respectively. The values between parenthesis represent the standard deviations
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for both methods (Table 3). For the BSSV method,
62.50 % of the inbred lines were concentrated in the
Suwan group, whereas for rrBLUP, this proportion was
79.17 %. These results suggest that the Suwan genetic
subgroup concentrates a higher proportion of germ-
plasm with alleles favorable to resistance to ear rot. As
reported by Rossouw et al. [33], the majority of germ-
plasm resistant to S. maydis is of tropical origin, which
corroborates our results because the Suwan genetic
group (belonging to the tropical group) was identified
as the largest source of resistance to this pathogen. In
the class of susceptible lines, the methods produced
conflicting results regarding the genetic group with the
highest proportion of these genotypes. The predomin-
antly susceptible group identified by the BSSV analysis
was SSS (25 %), whereas the predominant group identified
by rrBLUP was IODENT (29.17 %).

Discussion
Disease evaluation and line selection in tropical environ-
ments constitutes a great challenge for breeders. In
addition to the difficulty of obtaining reliable methods,
interactions between genotypes and environments fur-
ther hamper the selection of superior genotypes. In this
work, a high Genotype –By- Environment (G x E) inter-
action was observed in the analysis of phenotyping data
from ERIS, PRK and NESR. In the preliminary data ana-
lysis obtained with these methods, genetic variances of
67,843, 0.04709 and 18.2104 were observed, whereas the
genetic variances of the G x E component were 12,921,
0.4766 and 7.1249 respectively. This strong interaction
may have been caused by differences in climate between
the two environments. The climate in Lavras is classified
as highland tropical, whereas the climate of Uberlândia
is classified as tropical with a dry season. The inci-
dence of this pathogen is generally restricted to
higher altitudes and humidity environments, which
include the region of Lavras. Thus, we believe that
this difference in climates may be the factor that trig-
gered the high G x E interaction observed between
those two environments.
Regarding the method of evaluating pathogen inci-

dence, our results indicated that evaluating resistance to
ear rot is problematic. In general, the ERIS and NESR
measures presented low heritability compared with PKR,
although these three measures were highly correlated in
the lines, with the NESR and PRK traits showing a cor-
relation of 0.92. Thus, we suggest that the PRK trait may
be used as a parameter in the evaluation of resistance to
S. maydis because it shows higher heritability and is
highly correlated with direct measures of disease inci-
dence, such as ERIS and NESR. Moreover, unlike ERIS,
the PRK method is not a subjective method. The quanti-
tative nature of PRK resulted in improved predictions
and identification of regions of resistance to S. maydis. It
is worth noting that these three measures correlated
positively among themselves and negatively with weight
of ears without husk. For example, the correlation be-
tween NESR quantified by the weight of ears without husk

Table 2 Model performance based on coefficient of determination between individual predicted genomic breeding values and
observed phenotype obtained through cross-validation using the rrBLUP and BSSV methods by phenotyping per proportion of
rotten kernels (PRK) and ear rot incidence score (ERIS)

r2
ŷp ; yð Þ (T1)

r2
ŷp ; yð Þ (T2) r2

ŷp ; yð Þ (T3) r2
ŷp ; yð Þ (T4) r2

ŷp ; yð Þ (T5) Mean

PRK rrBLUP 0.544 0.594 0.497 0.621 0.587 0.569 (0.048)

BSSV 0.547 0.614 0.504 0.583 0.594 0.568 (0.043)

ERIS rrBLUP 0.265 0.257 0.197 0.245 0.241 0.241 (0.030)

BSSV 0.263 0.200 0.281 0.258 0.24 0.248 (0.035)

r2
ŷp ; yð Þ coefficient of determination between the predicted breeding value ŷp and observed phenotypic values y obtained in the cross-validation; T1, T2, T3, T4 and

T5 are the training populations 1, 2, 3, 4 and 5, respectively. The values between parenthesis represent the standard deviations

Table 3 Classification of 10 % of the most susceptible (S) and
resistant (R) inbred lines for the trait proportion of rotten kernels
(PRK) in the 13 genetic groups defined by the principal
component analysis (PCA) for the rrBLUP and BSSV models

Groups rrBLUP BSSV

S R S R

Mixed 12.50 % 4.17 % 12.50 % 4.17 %

Amarillo Dent 0 % 8.33 % 4.17 % 16.67 %

Female DK 0 % 0 % 0 % 4.17 %

Female UNR Temperate 0 % 0 % 8.33 % 0 %

IODENT 29.17 % 0 % 20.83 % 0 %

Lancaster 25.00 % 4.17 % 16.67 % 4.17 %

Male Temperate 0 % 4.17 % 4.17 % 0 %

Non-Stiff Stalk 4.17 % 0 % 8.33 % 0 %

SSS 25.00 % 0 % 25.00 % 0 %

Suwan 0 % 79.17 % 0 % 62.50 %

Temperate Dent 0 % 0 % 0 % 0 %

Tropical Flint 0 % 0 % 0 % 0 %

UNR 4.17 % 0 % 0 % 4.17 %
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−0.84 [28], which suggests that the selection of lines with
heavier ears contributes to more resistant genotypes.
As shown in our study, selecting the model that best

describes the genetic architecture may be decisive when
adopting a breeding strategy, such as when a breeder
only wants to select the most resistant lines or perform
MAS. Thus, the results of cross-validating and identify-
ing candidate genes may aid the breeder during decision
making.
In the cross-validation process using the BSSV and

rrBLUP methods, differences were not observed between
both procedures for GBV prediction and only a slight dif-
ference for phenotypic value predictions (Tables 1 and 2).
These results corroborate studies that compared direct re-
gression models in the genome [10, 21, 23] and suggest
that differences in prediction power are marginal and at-
tenuated with the cross-validation procedure [11, 17].
In regular studies involving GWS and cross-validation

methods, the supervised learning process is applied to
evaluate the model performance based on its prediction
ability for missing data. It is very usual to use the correl-
ation between predicted GBV and phenotype values
where the residual is assumed as a nuisance amount. In
this scenario, the maximal correlation is limited by the
trait heritability. On the other hand, if the residuals are
removed from the phenotypic values, the GBV might be
assumed as “true” values, where the squared correlation
threshold is equal to 1. It is because the covariance
among missing genotypes is equal to their variance
(see Methods). In this study, the difference between the
two accuracies measures is evident, and given that the re-
sidual is a spurious amount in genetic improvement, we
could suggest the use of the correlation between the GBVs
instead the GBVs vs. phenotypic values. However, we agree
that this suggestion is useful only in cross-validation and
statistical context; in practice, the prediction of phenotypic
values may present a better view of real genome-wide se-
lection efficiency.
Another important point about the cross-validation is re-

lated to the necessity of performing repeated k-fold to
evaluate the reliability of the prediction measure (r2). Wray
et al. [38] discuss the aspects of independence between
training and validation dataset under fixed GWAS models.
Baumann and Baumann [3] compare some repeated cross-
validations approaches and show that shrinkage models
such as LASSO are less influenced by the cross-validation
bias. In our work, both models are taken as shrinkage
models and given that our Bayesian approach demands
high computational effort it is very costly to perform re-
peated cross-validation under MCMC models such as
SSVS. However, we observed that for the rr-BLUP based
on mixed models, the running mean obtained across 100
rounds of 5-fold cross-validation were very close to showed
in Tables 1 and 2 (Additional file 1: Figure S1).

As indicated by Habier et al. [18], despite the models
used in GS having a similar predictive power, there are
variations in the methods by which genetic information is
retrieved. For example, Habier et al. [18] suggested that
the rrBLUP method (which represents an infinitesimal
model) tends to more efficiently capture genetic relation-
ship information, whereas the BayesB model (polygenic
model of specific variance) tends to retrieve primarily in-
formation on QTL-marker linkage disequilibrium. The
BSSV method as presented in this work is a (conceptually)
polygenic method, and unlike BayesB, the mixing propor-
tion is a Bernoulli random variable [25].
The identity by state (IBS) analysis obtained by the line

markers matrix showed a pyramidal cluster of heterotic
groups in our breeding program. The separation of tropical
groups, SSS and NSSS was evident with both clustering
methods.
The PCA-based cluster analysis strategies of maize in-

bred lines were performed in a similar way by Romay et
al. [32], who characterized 2815 inbred maize lines be-
longing to the germplasm bank of the US Department of
Agriculture (USDA) using the genotyping-by-sequencing
(GBS) technique with 681,257 SNPs. Despite the high
density of the marker panel and large number of evaluated
lines, consistent clustering was not observed among the
genetic groups, which may have been caused by the exclu-
sion of the unified relationship matrix A as a source of in-
formation for the spectral decomposition because these
authors used the markers’ Euclidean distance matrix. [22]
argue that the population structure can be retrieved in the
first principal components in PCA while high-order com-
ponents represent the kinship among the individual. This
claim could explain why or PCA analysis was able of sep-
arating the population structure even explaining only
15.24 % of the additive matrix.
In the clustering pattern obtained by Romay et al. [32],

strong overlapping occurs between the genetic groups,
whereas a clear distinction between groups was obtained
with our strategy. To confirm our hypothesis, the data
used by Romay et al. were subjected to the new analysis,
and a cross-shaped pattern was observed for these same
data (unpublished data).
Because of the adequate group characterization, most

of the resistance sources (almost 80 %) are clustered in
the tropical material as expected. Also, the lines belonging
to the SSS and IODENT group of temperate origin were
the most susceptible. This result, although expected, clari-
fies the importance of good germplasm characterization
for a better understanding of resistance sources. The tech-
nique associated with GWAS and the identification of
candidate genes regions provides breeders with a powerful
tool in the selection process. We must note that the inher-
itance of resistance to S. maydis, such as dominance and
epistasis effects, was not explored in depth in this work.
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Nonetheless, our results are a starting point for improving
the introduction of resistance alleles in susceptible lines
and for performing directed crosses.

Conclusions
Our results showed that the PRK trait may be used as an
evaluation method in the genomic selection and for re-
sistance to S. maydis. The rrBLUP and BSSV methods
present the same efficiency in the prediction of resistant
lines. In addition, the use of a PCA along with additive
relationship information was efficient at defining genetic
groups. Thus, it was possible to identify groups resistant
to S. maydis in tropical accessions, particularly in lines
distributed within the Suwan genetic group.

Methods
Genetic characterization of the germplasm bank
Four hundred and forty-seven lines were genotyped with
23,154 DArTSeq™ obtained by Diversity Arrays Technol-
ogy Pty. Ltd Yarralumia ACT, Australia. This technology
is based on a complexity reduction method in order to
obtain genome sequences copies and further sequencing
based on next-generation sequencing using HiSeq2000
(Illumina, USA) More details about the method can be
obtained in Raman et al. [30].
Missing data were imputed using the A.mat function

and mean method in the rrBLUP package [12] of R soft-
ware. Genomic relationships were calculated using the
additive relationship matrix (A) proposed by Vitezica et
al. [37] given by:

A ¼ WAW
0
A

2
P

pq

in which p is the frequency of the favorable allele; q is
the frequency of the unfavorable allele; WA is the devi-
ation matrix of the markers centered in p (mean of the
favorable allele for a given locus); and 2∑pq is the sum
of the variances of the loci.
Genetic clustering of the inbred lines was performed

by spectral decomposition of the relationship matrix A,
and the first two principal components were subse-
quently plotted. Thus, instead to carry out the SVD from
original genomic marker matrix we used the spectral de-
composition of Vitezica et al. [37] positive definite
matrix; to be more exact, since it is a square matrix we
can use A = ULLU and subsequently one can apply the
transformation A =ULV. After obtaining the plot, the
consistency between the genetic cluster obtained with the
markers and the known background was determined.
A hierarchical cluster analysis through the hclust

function of the hclust package in R software [35] calcu-
lated by the Wald method was also conducted using a

Euclidean distance matrix of the elements of the matrix A
as an object.

Field experiments and genotyping
The incidence of ear rot was evaluated in 238 lines of
the 447 genotyped lines, together with four resistant
controls from the germplasm bank of the Federal Univer-
sity of Lavras (Universidade Federal de Lavras - UFLA).
Only elite lines were phenotyped while the others 209 were
not since these lines were recently introduced in our breed-
ing program and present a small number of evaluations.
Therefore, the genome data for these lines were inserted in
this study in order to present the pattern of our breeding
program. The 238 lines were evaluated in crop year 2012/
2013 in two environments in the municipalities of Lavras
(910 m, 21°14’S and 45°00’W) and Uberlândia (863 m, 18°
55’S and 48°16’) in the state of Minas Gerais, Brazil.
The population was evaluated in an augmented in-

complete block design interspersed with common con-
trols. The block consisted of 10 treatments (8 regular
treatments and 2 common) and 3 replicates. The com-
mon treats are resistance and susceptive lines for S.
maydis. The experimental plots consisted of a 3-m row
with 0.7-m spacing.

Pathogen culture, inoculation and evaluation
S. maydis isolates were obtained and replicated at the Seed
Phytopathology Laboratory of the UFLA using the meth-
odology by Clements et al. [9] with several modifications.
The isolates were cultured in complete medium for

30 days. After this period, the conidial suspension was
adjusted using a Neubauer counting chamber to 106

conidia*mL−1 on the day of the inoculation. Pathogen in-
oculation was performed 15 days after 100 % of the field
plants had emitted the style-stigma using a pipette for
the inoculation of 1 mL of isolate suspension into each
corn ear.
The incidence of ear rot was evaluated based on three

methods: (i) ear rot incidence score (ERIS); (ii) number
of ears with symptoms of rot (NESR); and (iii) percent-
age of rotten kernels (PRK). A diagrammatic rating scale
proposed by Reid et al. [31] was used in the ERIS evalu-
ation method. The values of this scale range from 1 to 7
and included the following percentage severity categories:
1 (0 %); 2 (1-3 %); 3 (4-10 %); 4 (11-25 %); 5 (26-50 %); 6
(51-75 %); and 7 (76-100 %). The NESR was calculated as
the number of ears that presented the characteristic symp-
toms of the disease relative to the total number of ears in
the field. For the PRK, the evaluation was conducted ac-
cording to the procedure proposed in decree no. 11 of 04/
12/96 [5], which established a sample of 230 g of kernels
per plot for visual separation and determination of the
percentage of kernels showing discoloration in more than
a fourth of the total surface.
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Data statistical analysis
Data analyses were performed in two stages. In the first
phase, a mixed model was used for observation correc-
tions according to the following effects: replicates, envi-
ronments, genotypes x environments interaction (G X E)
and residuals. The mixed model adopted was as follows:

y ¼ Xβþ TgþΩbþWδþ e ð1Þ
where y is the n × 1 vector of observations; X is a n × p
fixed effects incidence matrix (replication within local
plus local); T is a n × q genetic effects incidence matrix;
Ω is a random block effects incidence matrix within rep-
licates; W is a line x environment interaction effects in-
cidence matrix; and β, g, b, δ are vectors of the effects
related to X, T, Ω and W, respectively and e represents
the residual effects. The distribution of effects g, b, δ
and e are assumed to be N(0, σg

2), N(0, σb
2), N(0, σδ

2)
and N(0, σe

2), respectively. The estimates of the best
linear unbiased predictor (e-BLUPs) and variance compo-
nents were obtained using residual maximum likelihood
(REML) function maximization [27].

Genomic analysis using the mixed models
The mixed model utilized in this study was calculated as
follows:

y⌣¼juþZaþe ð2Þ
where y⌣ is a vector of the corrected means based on model
1, n × 1; j is a unit vector corresponding to the mean; u is
the sample mean; Z is the marker’s genotype incidence
matrix; and a and e are vectors of the additive genetic for
each marker and residual effects, respectively.
The matrix of phenotypic variancesV is given as follows:

var yð Þ ¼ ZGZ0 þ Iσ2
e ¼ σ2

e Kλþ Ið Þ
where G =Aσa

2 is an additive genetic variance matrix and

Iσe
2 is the residual variance diagonal matrix and λ ¼ σ2a

σ2e
.

The GWAS analysis was performed with mixed.solve
in the rrBLUP package [12] of R software.

BSSV model
Among the Bayesian models proposed in the literature,
the BSSV model was used in this study because of its
ability to select large-effect markers in models with mul-
tiple markers. Adjustments to the original model pro-
posed by Yi et al. [39] were proposed, and a new
approach was used in order to encompass all marker ef-
fects and the model is calculated as follows:

y⌣ ¼ μþ
Xm

j¼1
zjaj þ e ð3Þ

where y⌣ is a vector of the corrected means based on
model 1 i obtained by model 1, μ is the sample intercept,

zij is the genotype of marker j of individual i, aj is the ef-
fect of the marker j and ei is the error of observation i
following distribution N(0, σe

2).
The acceptance of a marker effect depends on a com-

bination of priori assumptions conditioned to a set of
latent or indicator variables. Therefore, we can assume
that the a priori additive effects of the markers are as
follows:

ajjρ;Δj; δ e 1−ρð ÞN 0; σ2
aj

� �þ ρN 0; δð Þ; j ¼ 1;…;K

where σa
2
j and δ represent high and low magnitude vari-

ance in the genetic marker effects, respectively. In this
study, it was assumed a priori that

σ2ajja; b e inverse−escaled−χ2 v ¼ 4; s2 ¼ 0:002
� �

and δ = 10− 6 The prior hyperparameters v and s2 are
related to Bayes A method described in [13]. The δ =
10− 6 corresponds to individual marker heritability at
1 % of phenotypic variance i,e δ = σy

2 × 0.01/m.
Another modification in the original BSSV method

was the assumption that hyperparameter ρ was mod-
eled in advance by a Beta distribution ρ|a, b ~ Beta(a
= 1, b = 1) instead of 0.5 as originally described by Yi
et al. [39]. The a priori distribution for the effects of
the population mean was assumed to be constant,
and the same distribution of Δj was assumed for re-
sidual variance σe

2.
The numerical integration of the posterior condi-

tionals distribution was performed using the Markov
chain Monte Carlo algorithm via Gibbs sampling [8],
which is described by the following steps:

1. Sample μ of the full posterior conditional
distribution:

p μj ::::ð ÞeN Xn
i¼1

yi−
Xk
j¼1

zijaj

 !
=n;

σ2e
n

" #

2. Sample aj of the full posterior conditional
distribution:

p ajj ::::
� �eN Xn

i¼i

z2ij þ
σ2
e

vai

 !−1Xn
i¼1

zij yi−μ−
Xk
jËC≠j

zijËCajËC

0@ 1A;
Xn
i¼i

z2ij þ
σ2
e

vk

 !−1

σ2
e

24 35

where vai = ηiσa
2
i + (1 − ηi)δ, with η : {1, 0} and p(η) ~

Bernoulli(ρ)

3. Sample σ2ai of an inverse chi-square distribution with
the following parameters:

p σ2ai j…
� �e inverse−escaled−χ2 vþ 1; a2i þ vs2

� �
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4. Sample η of a Bernoulli distribution:

p ηi ¼ 1j ::::� �e ρN aij0; σ2ai
� �

ρN aij0; σ2
ai

� �
þ 1−ρð ÞN ajj0; δ

� �

5. Sample ρj of a Beta distribution using the following
conditional:

p ρj ::::ð ÞeBeta 1þ
Xk
j¼1

ηk ; 1þ k−
Xk
j¼1

ηk

 !" #

6. Sample residual variance:

p σ2
e j…

� �e inverse−escaled−χ2 vþ n;RSS þ vs2
� �

where RSS is the residual sum of squares.

7. Repeat the steps described until convergence is attained.

The significance of the marker effects was determined
with the Wald test. The statistics of this test W(λ) under
the null hypothesis follow an asymptotic distribution χ2

with one degree of freedom. The test values may be ob-
tained with

W λð Þ ¼
a2

j

σ2aj

where σ2aj ¼
Xn
i¼i

z2ij þ
σ2e
vai

 !−1

σ2e . The critical value for

marker acceptance was given by (χtab
2 = 3.84), consider-

ing an error rate of 5 %. The data set and the R program
are available in Additional file 2 and Additional file 3
respectively.

Cross-validation and correlations
The 5-Fold cross-validation method was used to as-
sess the accuracy of the models. The set of 242 ob-
servations was randomly subdivided into five training
populations, with four groups each containing 48 ob-
servations and one group containing 50 observations.
One group was sequentially eliminated in the analysis
process to be used as the validation population, and
the remaining four groups were used as training pop-
ulations (n-k) until all groups were used as the valid-
ation population. Predictions of the breeding values of

lines (ŷp) containing the validation population were
based on

ŷp kð Þ
¼ Zka

where Zk is the marker matrix of the individuals belong-
ing to the k-th validation population and a is the vector
of the marker effects estimated for individuals from the
training population.
The efficiency of prediction was measured by the de-

termination coefficient (r2) between the predicted breed-
ing values from validation set ŷp kð Þ

and the breeding

values observed from full data analysis based on Za. In
addition, the (r2) between ŷp kð Þ

and y⌣ (the corrected

phenotypic values) was used to rescale the correlation to
heritability threshold since this last measure takes into
account the residual and genetic variances while the first
approach based of BLUPs uses only the genetic variance.

In other words, assuming var ŷp kð Þ

� �
¼ σ2

a var y⌣ð Þ ¼ σ2a

þσ2
e and assuming independence among ŷp kð Þ

and the

residuals e, the expected maximal squared Pearson cor-

relation is r2max ¼
COV ŷpy

⌣ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ŷpð Þ var yð Þ

p !2

¼ σ2a
σ2aþσ2e

� �
¼ h2 . How-

ever, using the observed Za based on full data (n) and
the predicted BLUPs ŷp kð Þ

based on n-k data the

r2max ¼
COV ŷp;Zað Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ŷpð Þ var Zað Þ

p !2

¼ G2
12

G1G2

� �
where G12 is the co-

variance between missing and observed genotypes, G1 is
the covariance among the missing genotypes and G2 the
covariance between the observed genotypes. In this last
case, the threshold is equal 1 given that G12

2 =G1G2.
Therefore, the rmax

2 based on observed and predicted
GBVs are re-scaled to a maximal threshold equal to 1.
Using the predicted breeding values we ranked the

10 % of the most resistance lines in order to select the
best germplasm. These predicted breeding values include
all markers used in this analysis; presenting, therefore,
minor and larger associative markers.

Additional files

Additional file 1: Figure S1. Running mean derived from 100 sampling
of 5-fold cross-validation in rr-BLUP. GBV vs. GBV means prediction based
on BLUPs from full dataset n (given as true values) and those predicted
by n-k. GBV vs. y means the prediction based on phenotypic values and
BLUPs from n-k dataset. (PNG 582 kb)

Additional file 2: Genome dataset. (TXT 20871 kb)

Additional file 3: R-code. (R 4 kb)
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