Santagostino et al. BMC Genetics (2015) 16:126

DOI 10.1186/512863-015-0281-1
BMC

Genetics

RESEARCH ARTICLE Open Access
@CrossMark

Genome-wide evolutionary and functional
analysis of the Equine Repetitive Element 1:
an insertion in the myostatin promoter
affects gene expression

Marco Santagostino'", Lela Khoriauli'", Riccardo Gamba'", Margherita Bonuglia?, Ori Klipstein', Francesca M. Piras’,
Francesco Vella', Alessandra Russo?, Claudia Badiale', Alice Mazzagatti', Elena Raimondi’,
Solomon G. Nergadze'" and Elena Giulotto"”

Abstract

Background: In mammals, an important source of genomic variation is insertion polymorphism of retrotransposons.
These may acquire a functional role when inserted inside genes or in their proximity. The aim of this work was to carry
out a genome wide analysis of ERET retrotransposons in the horse and to analyze insertion polymorphism in relation
to evolution and function. The effect of an ERET insertion in the promoter of the myostatin gene, which is involved in
muscle development, was also investigated.

Results: In the horse population, the fraction of ERE1 polymorphic loci is related to the degree of similarity to their
consensus sequence. Through the analysis of ERE1 conservation in seven equid species, we established that the level
of identity to their consensus is indicative of evolutionary age of insertion. The position of ERE1s relative to genes
suggests that some elements have acquired a functional role. Reporter gene assays showed that the ERET insertion
within the horse myostatin promoter affects gene expression. The frequency of this variant promoter correlates with
sport aptitude and racing performance.

Conclusions: Sequence conservation and insertion polymorphism of ERET elements are related to the time of their
appearance in the horse lineage, therefore, ERE1s are a useful tool for evolutionary and population studies. Our results
suggest that the ERET insertion at the myostatin locus has been unwittingly selected by breeders to obtain horses with
specific racing abilities. Although a complex combination of environmental and genetic factors contributes to athletic

performance, breeding schemes may take into account ERET insertion polymorphism at the myostatin promoter.
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Background

A large fraction of the genome of mammals is occupied
by interspersed repeats that were generated during evo-
lution by the propagation of transposable elements
[1-3]. Short INterspersed Elements (SINEs) are non-
autonomous retrotransposons that make use of a trans-
position process in which an RNA intermediate is
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reverse transcribed and the resulting cDNA is inserted
into a new genomic location [4, 5]. Sequence analysis of
SINE elements suggested that most of them derive from
ancestral tRNAs, but there are examples of 5S- or 7SL-
like sequences [6]. These elements are characterized by
two internal RNA-polymerase III promoters that make
them transcriptionally independent, but their retrotran-
scription and integration processes are catalyzed by en-
zymes encoded by autonomous Long INterspesed
Elements (LINEs) [4, 5]. The primate Alu family is an
example of SINE; Alu repeats are the most abundant
transposable elements in the human genome accounting
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for more than one million copies [7-9]. The majority of
human Alu elements are present in all individuals be-
cause they were inserted in the genome before the radi-
ation of extant humans; however, some Alu elements,
that were integrated recently in the human lineage, are
characterized by insertion polymorphism [9-12]. In
humans, an inverse correlation between the evolutionary
age of Alu subfamilies and the percentage of poly-
morphic elements was demonstrated: 20-25 % of the el-
ements belonging to the youngest subfamily (AluY) are
polymorphic [13].

Because of their abundance and mechanism of origin,
transposable elements were considered “junk DNA”, al-
beit, in a number of examples it was shown that they
can acquire a functional role, a process termed “exapta-
tion” [14—17]; in particular, the insertion of transposable
elements inside genes or in their proximity may alter
gene structure or expression through gene interruption,
introduction of promoter sequences or splice sites [18—
20]. In some rare cases, transposons are implicated in
genetic disease or cancer [21-23].

In the present paper, taking advantage of the published
horse genome sequence [24], we carried out a genome
wide analysis of the perissodactyl-specific SINE family of
Equine Repetitive Elements (ERE) focusing our attention
on insertion polymorphism in relation to sequence con-
servation. ERE retrotransposons derive from tRNA®"
and occupy about 4 % of the horse genome [25, 26]; to
date, four main ERE subfamilies were identified: ERE1-4
[27, 28]. To our knowledge, before the present study, no
data were available on the involvement of horse trans-
posable elements in the modulation of gene expression.
The description of a polymorphic ERE1 insertion in the
promoter of the myostatin gene [29] prompted us to in-
vestigate the possible functional role of this insertion.

Myostatin or growth/differentiation factor 8, a mem-
ber of the transforming growth factor-p family, is a re-
pressor of muscle growth that regulates myoblast
proliferation and differentiation. It has been shown pre-
viously that mutations in the myostatin gene can cause
muscle hypertrophy in a range of mammals such as mice
[30], cattle [31, 32] and sheep [33]. In 2004, Schuelke
and collaborators reported the case of an extraordinarily
muscular child whose mother appeared muscular, al-
though not to the extent observed in her son, and was a
professional athlete [34]. The authors discovered that
the boy carried a single base substitution in both copies
of the myostatin gene generating a premature termin-
ation codon while the mother was heterozygous for the
mutation. Particularly relevant in this context is also the
“bully” phenotype in whippet racing dogs, which de-
pends on a frameshift mutation causing the production
of a truncated protein. Individuals homozygous for the
mutation show a double-muscle-phenotype, called
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“bully”, while heterozygotes display an intermediate
phenotype. While heterozygous animals have signifi-
cantly greater racing ability than wild-type and mutated
homozygous dogs, the excessive muscle mass of homo-
zygotes for the mutation is detrimental for performance
[35].

In the horse, the myostatin gene, which comprises
three exons and two introns, is located on chromosome
18; several sequence variants were identified in this gene
and in its flanking regions [29, 36—41]; among these var-
iants the SNP g.66493737C>T, which is contained
within the first intron, was associated with regulation of
gene expression in Thoroughbred race horses and pro-
posed as the best predictor of optimum racing distance
[29, 38, 42]. The same variant was also associated with
high values of body weight/withers height ratio, which,
in the horse, is considered a good indicator of skeletal
muscle mass [43]. Four additional SNPs, located in the
regions adjacent to the myostatin gene, have been identi-
fied on chromosome 18 and were associated to perform-
ance [43-45]. Finally, as mentioned above, the insertion
of an ERE1 element within the promoter region of the
myostatin gene was described in some Thoroughbreds
[37]. Recently, the presence of this insertion has been as-
sociated with a different muscle fiber composition [40,
46]. In the present paper we tested whether this inser-
tion affects gene expression, contributes to breed differ-
entiation and is relevant for sport aptitude and racing
performance.

Results and discussion

Insertion polymorphism of ERE loci in the reference
genome

A large body of evidence suggests that the horse genome
is in a state of rapid evolution [24, 47-50]. Therefore,
we may expect that several transposon insertions may
have occurred in the horse lineage in relatively recent
evolutionary times.

A preliminary in silico analysis of the four ERE sub-
families (ERE1 to ERE4) was carried out. To this pur-
pose, the consensus of each ERE subfamily [27, 28] was
used as query for a BLAT search (BLAST-Like Align-
ment Tool) in the reference sequence of the horse
[51, 52], which derives from the assembly of the gen-
omic sequence of the Thoroughbred horse named Twi-
light [24]. From each ERE subfamily, the 200 loci with
the highest identity to their consensus were analyzed in
search of empty alleles (i.e., alleles in which the ERE
element is not present, ERE-) that may be present in the
reference genome, thus identifying heterozygous loci in
the genome of Twilight. ERE- alleles were found for
3.5 % of the ERE1, 0.5 % of the ERE2 and none of the
ERE3 and ERE4 loci. Since the frequency of insertion
polymorphism of transposable elements is related to the
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age of their insertion in the host genome [11], these re-
sults strongly suggest that ERE1ls are the elements that
were inserted most recently in the horse genome. It
must be underlined that, since the reference sequence
derives from the genome of a single horse, the frequen-
cies of polymorphic loci reported above are largely
underestimated being based on the analysis of two alleles
per locus.

We then focused on the youngest subfamily, the EREL,
and carried out an extensive genome wide search of
these elements in the reference genome sequence
(Broad/equCab2). A list of 45,713 ERE1 loci was ob-
tained using the consensus sequence deposited at the
RepBase database as query [53] for a BLAST search
(Additional file 1: Table S1A). The sequences were then
filtered to include only elements with sizes similar to the
ERE1 consensus (225 bp + 10 bp) and with minimum
identity of 84 % to the consensus. This operation left
34,131 loci (Additional file 1: Table S1B). The ERE1 se-
quences located inside other repetitive elements were
also excluded from the analysis to avoid false positive re-
sults; this operation left 27,396 loci (Additional file 1:
Table S1C). In order to obtain a comprehensive view of
polymorphic ERE1 loci in Twilight, we analyzed the
horse trace database, which includes unassembled traces
[54] (center_project number G836). The sequence of
each one of the 27,396 ERE1 loci was used as query for
a BLAST search. The results of this analysis showed that
Twilight is heterozygous at 377 EREL loci, possessing an
ERE1+ and an ERE1- allele. A complete list of these
polymorphic loci is reported in Additional file 2: Table
S2. It is important to point out that an undefined num-
ber of EREI insertions, that are present in the horse
population, is not detectable in the reference genome
because Twilight may carry two ERE1- empty alleles at
such loci. A clear example of this situation is the inser-
tion in the myostatin gene promoter described below.
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Since the fixation of insertion elements in the genome
of a phylogenetic lineage requires many generations, the
presence of empty alleles suggests that the insertion
event occurred in relatively recent evolutionary times. In
addition, mutations tend to accumulate in the inserted
element and therefore a high degree of sequence conser-
vation is considered indicative of a young evolutionary
age of insertion, as previously shown for primate and ro-
dent interstitial telomeric sequences [55, 56] and for hu-
man transposable elements [57]. In light of these
considerations, we can hypothesize that ERE1 elements
with higher identities to the consensus may have greater
probabilities of being polymorphic compared to less
conserved elements. To test this hypothesis, we evalu-
ated the frequency of polymorphic loci in eight classes
of ERE1 elements, characterized by different degrees of
identity to the consensus (Fig. 1 and 2; data file 1: Table
S3). In the class including ERE1 loci with the highest
identity to the consensus (98—100 %), the percentage of
loci that are polymorphic in Twilight is surprisingly high
(4.6 %); this fraction decreases with the decrease of iden-
tity to the consensus reaching values as low as 0.1 %
(Fig. 1). The correlation between fraction of polymorphic
loci and percentage of identity to the ERE1 consensus
sequence is highly significant (Pearson’s correlation p =
0.93, p=8.5x 107*). These results suggest that sequence
conservation and insertion polymorphism of ERE ele-
ments are both related to the time of their appearance
in the horse lineage.

Insertion polymorphism in the horse population,
evolutionary history and sequence conservation of ERE1
loci

To evaluate the frequency of insertion polymorphism in
the horse population, we analyzed 80 ERE1 loci in 30
unrelated domestic horses of different origin (see Mate-
rials and Methods). The 80 loci were chosen randomly

Percentage of polymorphic loci
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Fig. 1 Percentage of ERET polymorphic loci in the horse genome reference sequence. The ERET elements were grouped in eight classes
according to their identity to the ERET consensus sequence published in Repbase. The percentage of polymorphic loci in each class is reported
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from four classes (20 loci per class) with different de-
grees of identity to the ERE1 consensus sequence (298,
95, 90 and 85 % identity). For each locus, a primer pair
flanking the ERE1 element was designed (Additional file
2: Table S4) and the genomic DNA of the 30 horses was
amplified by PCR. The analysis of these loci in the 30
horses is summarized in Fig. 2, where different colours
indicate the genotypes of each individual: ERE1+/+,
green; ERE1+/-, yellow; ERE1-/-, red. For 71 loci (Fig. 2)
only individuals homozygous for the presence of the
ERE1 element (ERE1+/+) were found, suggesting that ei-
ther the insertion is fixed in the population or the fre-
quency of ERE1- alleles is very low. The remaining 9 loci
were characterized by insertion polymorphism (Fig. 2).
At these 9 loci, the fraction of ERE1- alleles per locus is
highly variable ranging from 1.7 (locus 51) to 97 %
(locus 11). Although the number of loci analyzed in each
class as well as the number of individuals are relatively
small, the results are in agreement with the in silico re-
sults described above: polymorphic loci are more repre-
sented in the class with the highest similarity to the
ERE1 consensus sequence (6 loci out 20) whereas no
polymorphic loci were identified in the class with the
lowest identity to the consensus. These results confirm
the observation, reported in the previous paragraph, that
elements with high similarity to the consensus sequence,
have a greater probability of being polymorphic com-
pared to less conserved elements. We previously ob-
served a high frequency of insertion polymorphism in
the horse, involving NUMT elements (NUclear se-
quences of MiTochondrial origin) [49]. Similarly to
NUMT sequences, the fraction of ERE1 polymorphic loci
described here is particularly high compared to that re-
ported for SINE elements in the human genome [9],
thus providing further evidence for the rapid evolution
of the horse genome.

We also analyzed the 80 loci in 20 Przewalski’s horses,
in three individuals from E. asinus and in one individual
each from E. burchellii, E.grevyi, E. zebra hartmannae, E.
kiang and E. hemionus onager, respectively (Fig. 2); since
the results of the three E. asinus individuals were identi-
cal, only one column is reported in Fig. 2. As shown in
Fig. 3, from the evolutionary point of view, ERE1 loci
can be classified in three groups: elements which are
conserved in all species of the genus Equus (53 loci) and
thus were inserted in a common ancestor of all extant
equids, at least 3.8 Ma ago (Mya); elements which are
conserved in all analyzed horses (E. caballus and E. prze-
walskii) but absent in the other Equus species (25 loci),
thus inserted after the separation of the horse lineage,
that is about 3.8 Mya [58, 59]; elements which are
present in E. caballus only (two loci: 11 and 35 in Fig. 2)
and therefore were probably inserted after the separation
of the two horse species. To this regard, it must be
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pointed out that, in the middle of the twentieth century,
Przewalski’s horses were close to extinction and the ex-
tant population derives from a very limited number of
individuals [60]; therefore, the absence of an ERE1 elem-
ent in Przewalski’s horses may be related either to the
date of its insertion or to genetic drift. Nine loci (num-
ber 1, 6, 9, 11, 13, 15, 28, 35, 51 in Fig. 2) are poly-
morphic in one or both horse species and absent in the
other species, suggesting that these insertions occurred
in a relatively recent evolutionary time, after the separ-
ation of the horse lineages, and are not yet fixed.

In conclusion, these results showed that the fraction of
ERE1 insertions conserved in all Equus species increases
with the decrease of their identity to the consensus
(Fig. 3): only 3 out of the 20 horse ERE1 elements with
98-100 % identity were present in the other species
while 13, 17 and 20 loci out of 20 were conserved in the
classes with 95, 90 and 85 % identity, respectively (Fig. 3).
On the contrary, the majority of EREls that are present
in the horse lineage only (16/20) share a high identity to
the consensus (98—100 %). The loci that were conserved
in all Equus species were not polymorphic in the horse
(Fig. 2) confirming that they were inserted earlier during
evolution, in a common ancestor of the extant Equus
lineages. Since only three individuals from E. asinus and
one individual from E. burchellii, E. grevyi, E. zebra hart-
mannae, E. kiang and E. hemionus onager were analyzed,
we cannot exclude that, at some ERE1 loci, insertion
polymorphism may be present in one or more Equus
species, however, the results confirm that the level of
identity to the consensus not only is related to their
polymorphism but is also indicative of their evolutionary
age. Therefore, ERE1 insertion polymorphism can be
used for evolutionary analyses and population studies.

Position of ERE1 loci relative to genes

Since transposable elements, when inserted within or
near genes, may influence gene expression, we used an
algorithm developed in our laboratory (see Material and
Methods) to classify ERE1 elements according to their
position relative to genes. The coordinates of the horse
genes were obtained using the tool “UCSC Table
Browser” [61, 62]. Horse genes are poorly mapped,
therefore we included in the analysis the coordinates of
putative horse genes listed in a table generated by
UCSC, based on homology with human and bovine
genes. The results (Fig. 4) showed that 45.4 % of ERE1
elements were located inside introns of validated or pu-
tative genes. The fraction of the human genome occu-
pied by introns has been estimated to be between 26
and 38 % [2, 63—67]; since no data are available for the
horse, we are unable to conclude whether the fraction of
ERE1 elements contained within introns is simply due to
random insertion. Given the high number of ERE1
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elements within introns, it is possible that some have ac-
quired a functional role by modifying the splicing pat-
tern as documented for other SINEs [68-70]. The
remaining ERE1ls (54.6 %) were located at variable dis-
tances from genes. Our data suggest that there are no
hotspots for ERE1 integration sites in the horse genome
and that insertion events may have occurred at random.
Counter-selection may be responsible for the lack of in-
sertions within exons. Moreover, only 170 ERE1 inser-
tions (0.5 %) were found at less than 1 kb from the 5’
end of validated or putative genes suggesting that some
of them may affect gene expression.

Sequence organization of the myostatin gene promoter
and mechanism of ERE1 insertion
As mentioned above, a polymorphic ERE1 insertion was
identified at the myostatin locus [29]. In Fig. 5, the wild
type myostatin locus (Fig. 5a), the ERE1+ allele (Fig. 5e),
and a model for the transposition mechanism (Fig. 5b—
d) are shown. At the wild type myostatin locus, the regu-
latory elements, located upstream and in close proximity
of the putative transcription start site (Fig. 5a), comprise:
two TATA boxes (TATA boxl and 2, located 24 and
1 bp upstream the transcription start site, respectively)
and one CAAT box (70 bp upstream the transcription
start site). In addition, two E-boxes (E1 and E2), which
are muscle gene control elements [71, 72], are located
49 and 16 bp upstream the transcription start site, re-
spectively. Given their position relative to the putative
transcription start site, the TATA Box 1 and the CAAT
box are likely to constitute the core promoter directing
transcription of the horse wild type myostatin gene.
Sequence comparison of the wild type and ERE1+ al-
leles suggested that this insertion may have occurred ac-
cording to the previously proposed mechanism of SINE
elements retrotransposition in the human genome lead-
ing to a direct duplication of the target site [16, 73, 74].
According to this model, during the first step of the
process (Fig. 5a), the target site was cleaved inside the
TATA box 1 (black arrowhead); the 3’ end of the ERE1
RNA (light blue) annealed through microhomology to
the single-stranded 5-TTTTT-3' sequence generated
after the nick in the TATA box 1 (Fig. 5b). The free
3’OH group created after the cleavage was then used to
prime the reverse transcription of the ERE1 RNA and
synthesize the first strand of the ¢DNA (dark blue,
Fig. 5b). The second strand of the DNA was then
cleaved one bp downstream the E-box E2 (black arrow-
head, Fig. 5¢), producing a 3’ end that was used to prime
the synthesis of the second strand of the ERE1 DNA
(Fig. 5d). Through a gap filling reaction, the entire ERE1
sequence was integrated into the myostatin promoter
with the formation of the Target Site Duplication. Fig. 5e
shows the ERE1+ allele of the myostatin promoter
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obtained as a result of the retrotransposition event. The
inserted ERE1 (dark blue) is located 29 bp upstream the
transcription start site. The size of the Target Site Dupli-
cation (14 bp) falls into the range described for SINE el-
ements in the human genome [16, 73, 74]. The
consequence of the ERE1 insertion was a modification of
the core promoter with the formation of a variant TATA
Box 1 and the displacement of the CAAT box. This re-
arrangement likely affects the strength of the core
promoter.

Reporter gene assay of the two variants of the myostatin
gene promoter

To test the hypothesis that the ERE1 insertion alters the
expression of the myostatin gene, we performed a re-
porter gene assay using a plasmid containing the en-
hanced Green Fluorescent Protein (eGFP) gene and the
puromycin resistance gene. The two variants of the
myostatin promoter (ERE1+ and ERE1-) were cloned
from the genomic DNA of a heterozygous Thorough-
bred horse and inserted into the plasmid cloning site up-
stream of the eGFP reporter gene. The ERE1- variant
plasmid contained a 2042 bp genomic fragment com-
prising 31 bp from the myostatin UTR; the ERE1+ plas-
mid contained an insert differing from the previous one
only for the ERE1 insertion.

To test whether the ERE1 insertion can affect pro-
moter strength the two plasmids were transfected in hu-
man HeLa cells and in a horse fibroblast cell line that
we immortalized using the procedure described in
Vidale et al. [75]. Since transfection efficiency in horse
fibroblasts is extremely low (3—5 %), transient short term
transfections could not be performed. Long-term selec-
tion with puromycin had to be carried out in order to
isolate stably transfected cell populations. The expres-
sion of eGFP was evaluated by fluorescence microscopy,
western blotting and quantitative real-time PCR (Fig. 6).
Both in human and in horse cells, the ERE1 insertion
caused a reduction of eGFP fluorescence signals to al-
most undetectable levels (Fig. 6a). The effect of the in-
sertion on promoter strength was also demonstrated by
immunoblotting of protein extracts with an anti-eGFP
antibody (Fig. 6b): while a strong band could be detected
in protein extracts from cells transfected with the plas-
mid containing the ERE1- promoter, only a very faint
band could be observed in extracts from cells trans-
fected with the ERE1+ plasmid. We then carried out a
quantitative real-time PCR reaction using eGFP specific
primers (Additional file 2: Table S4B) to amplify reverse
transcribed mRNA from the transfected cell lines
(Fig. 6¢): in human cells transfected with the EREI1+
plasmid the expression level of the reporter gene showed
a 6.4-fold reduction compared with that observed in
cells transfected with the vector carrying the ERE1-
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promoter; similarly, a 4.9-fold reduction was observed in
horse fibroblasts. These results demonstrate that the
ERE1 insertion affects the ability of the myostatin gene
promoter to drive transcription of a reporter gene and
strongly suggest that the myostatin gene may be under-
expressed in horses containing this variant promoter
sequence.

ERE1 insertion polymorphism at the myostatin locus:
sport aptitude and racing performance

Given the role of myostatin in the regulation of muscle
development and considering the relevance of muscular
mass in athletic performance, we wondered whether the
genotype of horses relative to the ERE1 insertion may
influence their sport aptitude and racing abilities.

Using primers flanking the myostatin gene promoter
(Additional file 2: Table S4B), we set up a PCR assay to
identify the two alleles: the ERE1 containing allele, ERE1
+, produces a 441 bp band, while the allele lacking the
insertion, ERE1-, produces a 214 bp band. We then ana-
lyzed the frequency of the two alleles, in 5 horse breeds
(Quarter Horse, Andalusian, Lipizzaner, Norwegian
Fjord and Icelandic Pony) and in Przewalski’s horse. As
shown in Table 1A, in Quarter horses, although the
number of individuals analyzed is limited (20), the fre-
quency of the ERE1l+ allele seems particularly high
(57 %). In the Andalusian breed, the ERE1+ allele was
observed only in 3 heterozygous individuals, while in the
other breeds and in Przwelaski’s horse the ERE1+ variant
was not present. Since the ERE1 insertion was present
only in horse populations in which Thoroughbred blood
is known to have been introduced (Quarters, Andalu-
sians, Show Jumpers), it is likely that it appeared recently
in the horse lineage and probably occurred in a Thor-
oughbred ancestor, as previously suggested [46].

Although the number of individuals tested for each
breed is relatively small (19-23 animals per breed), the
striking frequency variation of the two alleles suggests
that the two variants may have been under selection
during the establishment and improvement of some
breeds in relation to specific aptitude and performance
traits. In particular, the high frequency of ERE1+ alleles in
Quarter horses suggests that this variant may favor the
ability of sprinting short distances. To this regard, it is im-
portant to point out that the name of this breed came
from its excellence in races of a quarter mile or less.

Therefore, to test the hypothesis that the ERE1 inser-
tion at the myostatin locus may affect the aptitude for
specific sport abilities, we initially analyzed the fre-
quency of the two allelic variants in 30 horses competing
in show-jumping at various levels, in 90 horses regis-
tered in the Italian Trotter studbook, bred for harness
racing, and in 75 horses registered in the Italian Thor-
oughbred studbook mainly bred for flat racing (Table 1B).
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Although Italian Trotters derive from English Thorough-
bred stallions crossed with mares of different origins,
and Thoroughbreds have been introduced in several
bloodlines of Show Jumpers, the allelic frequencies in
the three groups were strikingly different (Table 1B): the
ERE1+ allele was completely absent in the Trotters and,
in the Show Jumpers, only one individual was heterozy-
gous for the variant; on the contrary, among the flat ra-
cing horses, the percentage of ERE1+ alleles was 43.
These observations suggest that the ERE1+ allele may
have been selected in the Thoroughbreds and in the
Quarter Horses together with flat racing aptitude.

To test whether the ERE1+ variant may influence ra-
cing performance in the Thoroughbreds, we selected a
group of 117 elite horses classified in the top three
places in at least one high level race in Italy in the period
ranging from 2005 to 2011. In this selected group, the
ERE1+ allele was significantly more frequent compared
to the general Thoroughbred population (p = 9.31 x 107%,
Table 1 B). To test whether the EREI insertion influ-
ences performance relatively to race distance, the elite
horses were grouped according to Best Race Distance,
defined as the distance of the highest grade race won.
When multiple races of the same grade were won, the
distance of the race with the most valuable prize was
considered. The results of this analysis are shown in
Fig. 7: in short distance races (1000 and 1200 m), the
majority of winning horses (18 out of 30) were homozy-
gous for the ERE1+ allele and no homozygous individ-
uals for the ERE1- allele were found; in the long distance
races (>2000 m), only heterozygotes and ERE1- homozy-
gotes were observed and, in medium distance races
(1400-2000 m), all the three genotypes were represented
although the ERE1+ homozygotes were relatively more
frequent in the groups winning up to 1600 m races com-
pared to horses winning 1700—-2000 m races. When the
genotypic frequencies in horses winning short distance
(1000-1200 m), medium distance (1400-2000 m) and
long distance (>2000 m) races were compared, the dif-
ferences were highly significant (p = 1.94 x 107°).

Since the ERE1+ variant is associated with better per-
formance in short distance races, it may have been artifi-
cially selected through breeding, consequently, its
frequency increased in the Thoroughbred population, al-
though it was not fixed. The empty allele might also
have been subjected to artificial selection. Thorough-
breds are also used for long distance races, in which in-
dividuals homozygous for the ERE1- alleles have the best
performance while heterozygous animals seem to be
advantaged in average distance races. It should be
pointed out that among the Italian Trotters, a breed de-
rived from English Thoroughbreds, no ERE1+ allele was
identified. This is probably due to the fact that Italian
Trotters are bred for harness racing at a trot gait in
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relatively long distance races and this artificial selection
led to the loss of the ERE1l+ allele. Finally, although
Quarter Horses derive from the crossing of Thorough-
breds with horses from other breeds, the frequency of
the ERE1+ allele was even higher than in the Thorough-
breds themselves (Table 1); this observation can be re-
lated to the fact that these horses have been selected for
their sprinting ability in flat races of a quarter mile or
less.

As mentioned in the introduction, the g.66493737C >
T SNP in the first intron of the myostatin gene was
shown to be predictive of athletic performance [29, 37]:
C/C horses are suited for short-distance, C/T for
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Comparing the ERE1 and the g.66493737C>T geno-
types (Fig. 7), we observed that in 112 out of 117 horses
the two genotypes were concordant, with the C SNP al-
lele associated with ERE1+ and the T SNP allele associ-
ated with the ERE1- promoter. These results show that
the two polymorphic loci are tightly linked, as expected
by their close proximity in the genome (1605 bp). Al-
though the ERE1 insertion was previously described
[37], its influence on myostatin gene expression was not
investigated. In the present work, we demonstrate that
the ERE1 insertion affects gene expression supporting
the hypothesis that this is the genotype that drove se-
lection [46]. In particular, we showed that the ERE1

middle-distance and T/T for long-distance races. insertion causes a 5-6 fold decrease in the
Identity to Other
ERE1 Equus
consensus (%) |Locus Equus caballus Equus p species
»_0x>T
O NOTRON OIS NOHOONRAS ﬁﬁﬁgam
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IIINININ
NRDRASODNUDNEWN | SOBDNDN R DNSOORNDURWN-
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ONNNNNNNNVNDDDADDNND | DACININNNOIIOLS I S L
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ERE1- allele; yellow, heterozygous; grey, no data

Fig. 2 Insertion polymorphism of 80 ERE1 loci in equids. The insertion polymorphism of 80 random ERET loci with different percentage of identity to
the ERET consensus were analysed: 20 loci with 98-100 %, 20 loci with 95 %, 20 loci with 90 % and 20 loci with 85 % identity. The analysis was carried
out in 30 individuals from E. caballus, 20 individuals from E. przewalskii, three individuals from E. asinus, EAS, and one individual from each one of the
following species: E. kiang, EKI; E. hemionus onager, EHO; E. grevyi, EGR; E. burchellii, EBU; E. zebra hartmannae, EZH. The position of each locus in the
horse genome is reported in the left column. Each column reports data from the animal indicated on top. Each table cell shows the genotype of an
individual at a specific locus. Genotypes are indicated using different colours: green, homozygous for the ERE1+ allele; red, homozygous for the
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transcription of the reporter gene (Fig. 6), providing
the first example of a SINE element influencing gene
expression in the horse genome.

Although the g.66493737C > T SNP showed an associ-
ation with racing performance [29], this sequence vari-
ation does not provide an immediate functional
explanation of this trait. On the contrary, our experi-
mental data strongly suggest a direct influence of the
ERE1 insertion on myostatin expression. Since the
2.66493737C > T SNP is located only 1605 bp away from
the ERE1 insertion site in the promoter, the ERE1 inser-
tion, rather than the g.66493737C>T SNP (located in
the first intron), may functionally influence racing per-
formance, the two polymorphisms being in linkage dis-
equilibrium (r* = 0.73) as previously observed [29, 46]. In
other words, the results presented here on myostatin ex-
pression provide a physiological interpretation of the
correlation between EREL1 insertion and racing perform-
ance; moreover, the previously described correlation
among the g.66493737C > T SNP, muscle mass [43] and
muscle fiber composition [46] can also be reinterpreted
on the basis of the linkage disequilibrium between the
two polymorphic loci.

Conclusions

In the work presented here we provide a catalogue of
the most abundant SINE retrotransposons, ERE1, in the
horse genome. Through the analysis of sequence conser-
vation, insertion polymorphism and presence in other
equids, we provide an evolutionary dating of ERE1
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elements appearance in the Equus lineage. Therefore,
similarly to other mammalian SINE elements, ERE1 in-
sertion polymorphism can be used for evolutionary ana-
lyses and population studies.

The analysis of ERE1ls position relative to genes sug-
gests that some may have acquired a functional role by
modifying the splicing pattern, when interrupting an in-
tron, or by altering gene expression, when inserted in-
side regulatory regions. To this regard, we studied the
effect of an ERE1 insertion in the promoter of the myos-
tatin gene showing that it causes a reduction of pro-
moter strength in a reporter gene assay. Therefore, we
suggest that this ERE1 insertion may decrease the levels
of myostatin thus modifying muscle development.

The EREI insertion at the myostatin locus is poly-
morphic in the horse population and seems to be re-
lated to specific racing aptitude, the ERE1+ allele
being particularly common in breeds characterized
by sprinting ability, such as the Quarter Horse, and
absent in other breeds, such as the Italian Trotter,
which are used for long distance racing. In a sample
of Thoroughbred elite horses, classified in the top
three places in at least one high level race in Italy,
we observed a statistically significant correlation be-
tween the ERE1+ variant and good performance in
short distance races; on the other hand, the empty
allele was more frequent in Thoroughbreds winning
long distance races. We propose that the two vari-
ants have been unwittingly selected by breeders in
order to obtain horses with specific racing abilities.

Identity to
Identity to ERE1 [Fraction of loci
ERE1 consensus|(locus)
CONSENsUS Fraction of loci (locus) (%)
dentiyto %) 8100 (1720 (1T
ERE1 ) loci 98-100 |16/20 (1,3-10,12,13,15,17-20) 20 0/20( )
consensus|Traction of loci (locus) 95 6/20 (21,25,27,28,33,37) o oo
(%) 90 3/20 (42,48,51)
98-100 | 3/20 (2,14,16) 85 | 0/20 [ Fauus caballus
95 13/20 (22-24,26,29-32,34,36,38-40) | .
90  [17/20 (41,43-47.49,50,52-60) Equus przewalskii
85 20/20 (61-80)
Other Equus species
_______ 1 | 1 | 1 | 1 | 1 | 1 |
5 4 3 2 1 0 Mya
Fig. 3 Phylogenetic tree of equids. The time of insertion of each one of the 80 ERE1s is marked on the phylogenetic tree (adapted from [58, 59]). ERE1 loci
are classified according to the percentage of identity to the consensus sequence, the fraction of inserted loci in each class of identity is shown. Each ERE1
is indicated by a unique locus number (see Fig. 2 and Additional data file 1: Table S3A). The lineage “Other Equus species” comprises the following
non-horse species: E. asinus, E. kiang, E. hemionus onager, E. burchellii, E. grewyi, E. zebra hartmannae
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Table 1 ERE1+ and ERET- genotyping at the myostatin locus
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Number of alleles (%)

Homozygous individuals (%)  Heterozygous individuals (%)

Number of individuals ~ ERET+ ERE1- ERET+/+ ERET1—/— ERE1+/—
A Quarter Horse 20 23 (57.5) 17 (42.5) 9 (45) 6 (30) 5(25)
Andalusian 20 3(7.5) 37925 0 17 (85) 3(15)
Lipizzaner 23 0 46 (1000 O 23 (100) 0
Norwegian Fjord 20 0 40 (100) 0 20 (100) 0
Icelandic Pony 19 0 38 (100) 0 19 (100) 0
Przewalski's Horse 20 0 40 (1000 O 20 (100) 0
B Show Jumpers 30 1(1.7) 50983) O 29 (96.7) 1(3.3)
[talian Trotters 90 0 180 (100) © 90 (100) 0
Unselected Italian Thoroughbreds 75 65 (433) 85(56.7) 18 (24.0) 28 (37.3) 29 (38.7)
Elite Italian Thoroughbreds 17 135(57.7) 99 (423) 33(28.2) 15(12.8) 69 (59.0)

(A) Analysis of individuals from five breeds of the domestic horse and from Przewalski’s horse. (B) Analysis of individuals bred for different sport aptitude.

Our results indicate that, although racing perform-
ance is certainly influenced by environmental factors,
like training and nutrition, and by several genetic
factors, breeding schemes may also take into account
the differential effect of these two ERE1 allelic
variants.

Methods

Ethics statement

Horse blood and hair samples were collected in the sta-
bles where the animals were kept, during veterinary
practices carried out for routine clinical analysis, animal
care or registration requirements. Since blood samples
were not collected for experimental purposes, according
to the Italian law (Decreto Legislativo 4/03/2014 n.26),
the procedures do not require approval by an ethical
committee. Written consent from the owners was not
required because the identity of horses and owners can-
not be established from the data presented in this work.

DNA samples from endangered Equus species were
shipped to Italy from the San Diego zoo together with
the appropriate international CITES permit. Horse fibro-
blast cell lines were established from skin samples taken
from animals not specifically sacrificed for this study;
the animals were being processed as part of the normal
work of the abattoirs.

Preliminary in silico analysis of the polymorphism of the
four ERE subfamilies

The consensus sequences of the ERE subfamilies ERE1
(accession number: D26566) [53], ERE2 [76], ERE3 [77],
ERE4 [78] were downloaded from Repbase [27, 28] and
used as queries for a BLAT search against the horse gen-
ome reference sequence (September 2007 Broad/equ-
Cab2.0 assembly) [51, 52]. For each ERE subfamily the
200 loci with the highest identity to their consensus se-
quence were identified. Their sequence was used as
query for a BLAST search against the horse Trace

Intron
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<1 Kb from the 5’ end
0.5%

2.7%

est gene (>10 Kb, 5-10 Kb, 1-5 Kb, < 1 Kb)

1-5 Kb from the 5’ end

Location of ERE1 elements relative to validated or putative genes

> 10 Kb from the 5’ end
48.6%

5-10 Kb from the 5’ end

2.8%

Fig. 4 Distribution of ERE1 elements relative to genes. The percentage of ERE1 loci located in introns of validated or putative genes (red) and in
non-genic regions is indicated. ERE1 elements located in non-genic regions are classified according to their distance from the 5" end of the near-
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database [54], which is a collection of short sequences
(<1 Kb) generated during large-scale sequencing pro-
jects. From the Trace database we selected the dataset
Equus caballus-WGS, which contains reads that were
not included in the final assembly of the horse genome
reference sequence. We then used the sequences flank-
ing each ERE insertion as query to search for traces cor-
responding to the same loci but lacking the ERE
insertion (empty alleles).

Search of ERE1 loci characterized by insertion
polymorphism in the horse genome reference sequence
Our preliminary search, based on the analysis of 200 loci
from each ERE subfamily, showed that EREls have the
highest proportion of empty alleles. We then focused
further analyses on this subfamily.

In order to obtain a comprehensive catalog of ERE1
polymorphic loci in the horse genome reference se-
quence, we developed a pipeline using the C# program-
ming language (Microsoft Visual Studio 2008) and
Microsoft SQL Server 2008 as the database management
system. The ERE1 consensus sequence downloaded from

RepBase (accession number D26566) [53] was used as
query for a BLAST search against the horse genome ref-
erence sequence (September 2007 Broad/equCab2.0 as-
sembly) [79]. The BLAST search was performed using
“megablast” as optimization algorithm and standard
search parameters. Results were downloaded as hit table.
Only the loci with identity to the consensus greater than
84 % were considered. To exclude loci that were subject
to deletions or insertions, only the hits with length simi-
lar to that of the ERE1 consensus sequence (225 + 10 bp)
were considered. Since the coordinates of the hits inside
the table were referred to contig sequences, they were
converted into genomic coordinates using the conver-
sion table “seq_contig.md” at [80]. ERE1s located inside
unplaced regions were discarded. Since our method is
based on similarity, ERE1s inserted inside other transpo-
sons could give rise to false positive hits because several
uninterrupted transposons are scattered through the
genome. Therefore, before starting the search for poly-
morphic loci we identified and discarded ERE1 elements
inserted inside other transposons. To this purpose, we
downloaded the list of the horse transposable elements
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Fig. 6 Reporter gene assay. The reporter gene assay (eGFP expression) was carried out in human Hela cells (left) and in horse immortalized
fibroblasts (right). a Fluorescence microscopy images of cells transfected with the two constructs containing the eGFP gene under the control of
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ERET+ (right) promoter. ¢ Quantification of eGFP expression by quantitative RT-PCR. The expression levels of the eGFP transcript are indicated in
arbitrary units. eGFP levels in cells transfected with the ERE1- plasmid were used as reference and set to 1.0. NTCs, no-template controls
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from the site UCSC Genome Bioinformatics using the
tool “Table Browser” [61, 62]. The list of transposons is
found in the data table called “rmsk” (Group “Variation
and Repeats”, Track “RepeatMasker”) that was generated
using the software RepeatMasker [81] during the horse
genome sequencing project [24]. The coordinates of
each ERE1 were compared with those of the boundaries
of other transposable elements. If an ERE1 interrupted a
repetitive element the locus was discarded.

To identify empty alleles, for each locus we down-
loaded a 2.2 Kb sequence from UCSC Genome Browser
[24, 82, 83] containing the transposon (about 225 bp), 1
Kb from the 5 flanking region and 1 Kb from the 3’
flanking region. These sequences were then used as
queries for a BLAST search [54] against the horse
“Traces — WGS sequence” database. The BLAST search
was performed using “megablast” as optimization algo-
rithm and standard search parameters. If the hit con-
tained a 225 + 10 bp gap and was at least 98 % identical
to the sequences flanking the transposon, it was consid-
ered an ERE1- locus. Only traces from the reference
genome of Twilight were considered identifying them as
belonging to “center_project number” G836. The specifi-
city of each trace sequence was manually checked using
BLAT [51, 52] and MultAlin [84, 85]. In order to focus
on the loci inserted in single copy sequences, the ERE1
loci that were found at multiple positions during the
BLAT search, and were probably located inside segmen-
tal duplications, were discarded. The complete list of
single copy polymorphic ERE1 loci and the accession
codes of the traces (Trace id) corresponding to the
empty alleles is reported in Additional file 2: Table S2.

In silico localization of ERE1 elements relative to genes

The position of ERE1 elements relative to horse genes
was defined using the genomic coordinates of known
horse validated and putative genes. Horse validated
genes and their coordinates are listed in the data table
“refGene” (assembly “Sep. 2007”) downloaded from the
site UCSC Genome Bioinformatics using the tool “Table
Browser” [61, 62]. The “refGene” table contains, among
other information, the name of each gene, the coordi-
nates of the transcription start and stop sites, the coordi-
nates of the boundaries of each exon. Since the number
of known horse genes is relatively small, we also in-
cluded in the search the genomic coordinates of putative
genes defined by sequence homology with those from
human and bovine as listed in the data table “Other
RefSeq (xenoRefGene)”. The data table (xenoRefGene)
was downloaded from using the tool “Table Browser”
[61, 62] and was used to define the coordinates of the
beginning and end of putative genes in horse that are
orthologous to those from human and bovine. This track
was prepared by the UCSC genome browser group as
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described in the information page (https://genome.ucs-
c.edu/cgi-bin/hgTrackUi?hgsid=442242277_zw0eu9-
Hy93E8wIE62c8BxvE3BJox&c=chr11&g=xenoRefGene):
as stated in the information page, this track shows
known protein-coding and non-protein-coding genes for
organisms other than horse. The RNAs were aligned
against the horse genome using blat. This track was pro-
duced at UCSC from RNA sequence data generated by
scientists worldwide and curated by the NCBI RefSeq
project.

Genomic DNA samples

Genomic DNA was extracted from blood or hair sam-
ples, or from cultured primary fibroblasts using standard
protocols. The 30 E. caballus samples shown in Fig. 2
derive from: peripheral blood of 22 show jumping horses
which, according to their pedigree chart, do not share
common ancestors up to the third generation (they were
also used for the analysis of the myostatin gene poly-
morphism shown in Table 1, see below); fibroblast cell
lines established from the skin of 8 slaughtered animals
which were shown to be unrelated by microsatellite ana-
lysis as described in [86]. The E. asinus samples derive
from fibroblast cell lines established from the skin of 3
slaughtered animals. The E. grevyi sample derives from a
fibroblast cell line purchased from Coriell Repositories
and E. burchellii fibroblasts were a kind gift from Mar-
iano Rocchi (University of Bari, Italy) [50, 87]. E. zebra
hartmannae, E. kiang and E. hemionus onager fibroblasts
were provided by Oliver Ryder (Genetics Division of San
Diego Zoo, San Diego, California, USA) [48]. DNA sam-
ples from Quarter Horses, Andalusian, Norwegian Fjord,
Icelandic Ponies (Table 1) and E. przewalskii (Fig. 2 and
Table 1) were provided by Cecilia Penedo (UC Davis,
California, USA). Lipizzaner DNA samples (Table 1)
were described in [88]. The 30 Show Jumpers in Table 1,
which comprise the 22 E. caballus individuals of Fig. 2,
were animals kept in Italian sport riding stables and
competing at the National and International level; they
derived from different stud farms in Italy, France,
Germany, Holland, Belgium and were chosen by the
owners for their show jumping aptitude. Genomic DNA
from Italian Trotters and Italian Thoroughbreds was ex-
tracted from blood spotted on FTA® filter papers (What-
man Bioscience, Cambridge, UK). All samples came
from horses belonging to the Italian Stud Book of
MiPAAF (Ministero Delle Politiche Agricole Alimentari
e Forestali). The performance information were provided
by ANAC (Associazione Nazionale Allevatori Cavalli
Purosangue).

PCR and SNP analysis
Eighty ERE1 insertions with different degrees of identity
relative to the consensus sequence were randomly
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selected from the list of 27,396 loci obtained by in silico
analysis. The coordinates of the 80 loci are reported in
Additional file 2: Table S4A together with the sequence
of the primers deduced from the sequences flanking
the transposon (Additional file 2: Table S4A). Twenty
ng of genomic DNA were used as template for PCR
experiments performed in a 10 pl-final volume with 8
pmoles of each primer, 0.2 mM dNTPs, 1x Green
Buffer (Promega) and 0.4 units of GoTaq DNA poly-
merase (Promega). After a denaturation step at 95 °C
for 2 min, the following amplification cycle was per-
formed 3 times: 95 °C for 50 s, appropriate annealing
temperature (Additional file 2: Table S4A) for 45 s,
72 °C for 1 min. The first 3 cycles were followed by
27 cycles: 95 ° C for 30 s, appropriate annealing
temperature for 35 s, 72 °C for 1 min. Final extension
was carried out at 72 °C for 5 min. PCR products
were checked by electrophoresis in 1 % agarose gel.

To analyze the ERE1 insertion polymorphism at the
myostatin promoter, we amplified genomic DNAs using
primers from the sequences flanking the insertion site
(MyostProm-FO and MyostProm-R, Additional file 2:
Table S4B). The expected length of the PCR products
from the ERE1+ and the ERE1- alleles were 441 and
214 bp, respectively. The reactions were carried out as
described above.

The Analysis of SNP g.66493737C > T was performed
using the “Custom TagMan SNP Assay” (Applied Biosys-
tems) on a 7500 Fast Real Time PCR Instrument.

Preparation of plasmids for reporter gene assay

In order to clone the entire promoter and the transcrip-
tion start site of the myostatin gene we PCR-amplified
the locus chr18:66495283-66497324 (equCab2.0) from
the genomic DNA of a horse heterozygous for the ERE1
insertion.

PCR reaction was performed using the primers
MyostProm-F and MyostProm-R (Additional file 2:
Table S4B), which contain HindIll and BamHI restric-
tion sites, respectively. After a denaturation step at 95 °C
for 2 min, the following amplification cycle was repeated
for 30 times: 94 °C for 40 s, 65 °C for 40 s and 72 °C for
4 min. The final extension was carried out at 72 °C for
10 min. The reaction products corresponding to the
ERE1- and the ERE1+ allele (2058 and 2285 bp, respect-
ively) were separated by electrophoresis on 1 % agarose
gel and purified using the Wizard SV Gel and PCR
Clean-Up System (Promega). The two alleles differed
only for the presence of the ERE1 element and the target
site duplication (see Fig. 3).

The purified PCR products were digested with HindIIl
and BamHI and then cloned, upstream of the enhanced
Green Fluorescent Protein (eGFP) ¢cDNA, into an ex-
pression vector that was previously constructed in our
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laboratory [89]. Our vector contains the puromycin and
ampicillin resistance genes. All constructs were checked
by Sanger sequencing.

Cell culture and transfection

Horse Immortal Fibroblasts [75] and HeLa (human cer-
vical carcinoma) cells were cultured in high-glucose D-
MEM supplemented with 10 % fetal calf serum (Euro-
clone), 2 % non-essential amino acids, 2 mM L-glutam-
ine and 1x penicillin-streptomycin (Sigma). For primary
fibroblast cell lines, the culture medium was supple-
mented with 20 % fetal calf serum. Cells were routinely
cultured at 37 °C in 5 % CO,.

Plasmid DNA for promoter reporter assays was pre-
pared using QIAGEN Plasmid Midi kit. Transfections
were carried out using the Lipofectamine 2000 reagent
(Invitrogen) according to the manufacturer’s protocol.

Twenty-four hours post-transfection, cells were se-
lected adding 300 ng/ml (horse immortal fibroblasts) or
1 py/ml (HeLa cells) puromycin to the medium. Cells
were cultured with selective medium until the emer-
gence of drug-resistant colonies, that is 3 weeks for
horse fibroblasts and 2 weeks for HeLa cells. Pools of
about 50 colonies were obtained and grown as stably
transfected cell populations.

Western Blot experiments

Protein extracts were prepared from samples three mil-
lion cells as follows: the cells were washed twice with ice
cold 1xPBS, resuspended in lysis buffer (50 mM Tris—
HCI pH 6.8, 86 mM [-mercaptoethanol, 2 % SDS) and
boiled for 10 min. Proteins were separated by 10 % SDS-
PAGE and transferred to nitrocellulose membranes
(Amersham Protran Premium 0.45 pm NC) through wet
transfer. Membranes were incubated with a rat mono-
clonal antibody against eGFP (Chromotek, code 3H9),
diluted 1:1000, and with a mouse monoclonal antibody
against tubulin (NeoMarkers, Ab-4, code MS-719-
P1ABX), diluted 1:3000. Secondary antibodies, conju-
gated to horseradish peroxidase, were a chicken anti-rat
IgG-HRP (Santa Cruz Biotechnology, code sc-2956), di-
luted 1:5000, and an ImmunoPure goat anti-mouse
monoclonal (H+L) (Pierce, code 31430), diluted
1:10,000. Detection was performed using Immun-Star
WesternC Kit (Bio-Rad) according to the manufacturer’s
protocol. Pre-incubation of the membranes and dilutions
of the antibodies were performed in 1xPBS containing
0,05 % Tween20 and 7.5 % skim milk.

eGFP fluorescence analysis

Cells for eGFP fluorescence analysis were grown on
coverslips (24 x 24 mm), washed with cold 1xPBS and
fixed in 2 % paraformaldehyde in PBS for 10 min.
Fixed cells were then stained with DAPI (4,6-
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diamidino-2-phenylindole) and observed with a ZEISS
Axioplan fluorescence microscope at 63x magnifica-
tion. Pictures were captured using a CoolSNAP CCD
camera (RS Photometrics) and processed using the
software IPLab 3.5.5 (Scanalytics inc).

RNA preparation and quantitative RT-PCR

Total RNA from transfected HeLa and horse fibroblast
cells was extracted using TRizol Reagent (Invitrogen) ac-
cording to the manufacturer’s protocol. The extracted
RNA was purified using the RNA Clean & Concentrator-
25 kit (Zymo Research) and treated three times with RQ1
RNase-free DNase (Promega).

For quantitative RT-PCR experiments we reverse
transcribed 2.5 pg of total RNA using oligo-d(T);;
primers and Revert Aid Premium First Strand ¢cDNA
synthesis kit (Fermentas) according to the manufacturer’s
protocol.

The ¢cDNA was PCR amplified using GoTaq qPCR
Master Mix (Promega) containing the appropriate oligo-
nucleotides (Additional file 2: Table S4B). Oligonucleo-
tides eGFP-F and eGFP-R were used to detect the eGFP
transcript. GAPDH (glyceraldehyde 3-phosphate de-
hydrogenase, primer pair GAPDH-F and GAPDH-R) or
PRKCI  (protein kinase C iota, primer pair
humcavPRKC-RealT-F  and cavPRKC-RealT-R) were
used as control genes for quantitative RT-PCRs carried
out with the cDNA from HeLa cells or horse immortal
fibroblasts, respectively. Each sample was prepared in
triplicate. Negative controls (No template controls,
NTCs) were included in the experiments. Reactions were
carried out using an Opticon 2 System instrument (M]
Research). Cycling parameters comprised an initial de-
naturation at 95 °C for 2 min followed by 50 cycles at
95 °C for 15 s, 62 °C for 30 s and 72 °C for 30 s coupled
to fluorescence detection. Experiments were repeated
twice for each transfected cell line. Data were analyzed
with the Opticon Monitor 3 software. Levels of expres-
sion were calculated using the standard AACq method
[90], the level of expression in cells transfected with the
plasmid containing the wild type allele was used as
reference.

Statistical analysis

The correlation between the percentage of identity of
the ERE1 loci and the natural logarithm of the frequency
of polymorphic loci in each class was tested calculating
Pearson’s product moment correlation coefficient.

The significance of the difference of the allelic fre-
quencies at the myostatin promoter in the populations
of Elite and Unselected Thoroughbreds was tested using
a Chi-Square test goodness of fit. The allelic frequencies
in the 75 Unselected Thoroughbreds were adopted as
expected values.
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The significance of the correlation between the Best
Race Distance and the genotype of the 117 Elite Thor-
oughbreds for the ERE1 insertion at the myostatin pro-
moter was tested using a Chi-Square test for
independence.

All statistical analyses were performed using R [91].

Availability of supporting data
The data sets supporting the results of this article are in-

cluded within the article and its additional files.

Additional files

Additional file 1: Table S1.A lists the 45,713 loci identified using the
ERET consensus sequence deposited at the RepBase database as query
for a BLAST search against the horse genome reference sequence. Table
S1B reports the 34,131 ERE1 loci with sizes similar to the ERET consensus
(225 + 10 bp) and with minimum identity to the consensus of 84 %.
Table S1.C lists the 27,396 ERE1 loci that are not located inside other
repetitive elements. (XLSX 3293 kb)

Additional file 2: Table S2. lists the ERE1 polymorphic loci identified in
the horse reference genome sequence. Table S3. reports the frequency
of ERE1 polymorphic loci in eight classes of ERET elements grouped
according to consensus identity. The values reported in this table were
used to draw Fig. 1. Table S4A lists the genomic position of the 80 ERET
loci analysed in Fig. 2 and the sequence of the primers used for each
locus. Table S4B lists the primers used to clone the myostatin promoter
region and those used to perform quantitative RT-PCR experiments for
reporter gene assay. (PDF 184 kb)
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