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Genomic value prediction for quantitative traits
under the epistatic model
Zhiqiu Hu1, Yongguang Li2, Xiaohui Song2, Yingpeng Han2, Xiaodong Cai3, Shizhong Xu1, Wenbin Li2*

Abstract

Background: Most quantitative traits are controlled by multiple quantitative trait loci (QTL). The contribution of
each locus may be negligible but the collective contribution of all loci is usually significant. Genome selection that
uses markers of the entire genome to predict the genomic values of individual plants or animals can be more
efficient than selection on phenotypic values and pedigree information alone for genetic improvement. When a
quantitative trait is contributed by epistatic effects, using all markers (main effects) and marker pairs (epistatic
effects) to predict the genomic values of plants can achieve the maximum efficiency for genetic improvement.

Results: In this study, we created 126 recombinant inbred lines of soybean and genotyped 80 makers across the
genome. We applied the genome selection technique to predict the genomic value of somatic embryo number
(a quantitative trait) for each line. Cross validation analysis showed that the squared correlation coefficient between
the observed and predicted embryo numbers was 0.33 when only main (additive) effects were used for prediction.
When the interaction (epistatic) effects were also included in the model, the squared correlation coefficient
reached 0.78.

Conclusions: This study provided an excellent example for the application of genome selection to plant breeding.

Background
Genome selection refers to a method for genomic value
prediction using markers of the entire genome [1,2]. It
is effective for genetic improvement of quantitative traits
that are controlled by multiple quantitative trait loci
(QTL). Some traits may be controlled by only a few
QTL and marker assisted selection using only the few
detected QTL can be effective. However, most quantita-
tive traits are determined by multiple QTL and their
interactions. Marker assisted selection using only a few
detected loci may not be efficient for these traits. Using
all QTL collectively to predict the breeding values of
individual plants can outperform the traditional marker
assisted selection [3,4]. However, there might be some
trade off between the numbers of QTL included in the
model and the efficiency of prediction. Cross validation
can help us determine the optimal number of QTL
included in the model to maximize the efficiency of gen-
ome selection.

The importance of epistasis in genetic determination
may vary across different species. In agricultural crops,
most quantitative traits in barley do not have a strong
basis of epistatic effects [5]. However, epistasis has been
shown to be important in QTL studies in rice [6-8].
Dudley and Johnson [9] found that epistatic effects are
more important than additive effects in determination of
oil, protein and starch contents of corn. They concluded
that epistasis is an important contributor to the long
term response to selection of these quantitative traits.
The number of somatic embryos is an important trait

for consideration in soybean breeding program because
it is directly related to the plant regeneration system
that is essential for effective gene transfer. The capacity
of plant regeneration through immature embryo culture
of soybean is genetically determined, reflected by signifi-
cant variation across different lines (from 0% to 100% of
regeneration). The genetic knowledge of the regenera-
tion trait based on immature embryo culture and the
discovery of molecular markers associated with regen-
eration will offer a great opportunity to develop efficient
elite inbred lines with increased regeneration capacity.
However, studies on the genetic basis of embryogenesis

* Correspondence: wenbinli@neau.edu.cn
2Soybean Research Institute (Chinese Education Ministry’s Key Laboratory of
Soybean Biology), Northeast Agricultural University, 150030 Harbin, PR China
Full list of author information is available at the end of the article

Hu et al. BMC Genetics 2011, 12:15
http://www.biomedcentral.com/1471-2156/12/15

© 2011 Hu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:wenbinli@neau.edu.cn
http://creativecommons.org/licenses/by/2.0


are lacking. There is no information available about the
role of epistasis. In this study, we used advanced statisti-
cal methods to investigate not only the main effects but
also pair-wise interaction (epistatic) effects for soybean
somatic embryogenesis.
Statistical methods for QTL mapping are available but

mainly for individual marker (main effect) analysis and
individual marker pair (epistatic effect) analysis [10-12].
The epistatic model analysis in corn conducted by Dud-
ley and Johnson [9] is an example of such studies.
Recently, Xu and Jia [5] applied a Bayesian shrinkage
method, called the empirical Bayesian method by Xu
[13], to evaluate all markers and marker pairs of the
whole genome to estimate the genomewide epistatic
effects. The empirical Bayesian method [13] provides
better estimation of the epistatic effects because all
effects are estimated simultaneously in a single model.
This method has not been applied to QTL study in
other species. The method can evaluate many effects
simultaneously rather than separately. When the num-
ber of model effects is larger than the sample size, the
model can fit the data perfectly, but may loose the pre-
dictive value. Cross validation is an effective approach
for model checking and variable selection [14] and has
been used for genome prediction in plants [15] and ani-
mals [16]. This study provides another example of suc-
cessful use of cross validation for genome selection.

Result
Main effect model
The numerical codes (marker IDs) and names of the 80
markers are given in Table 1 along with the positions
and the linkage groups. For example, marker 74 (M74)
in the model has a marker name Satt579, which is
located in position 149.39 cM of linkage group 1. The
numerical codes allow an easy way to make a graphical
presentation of the results. The LOD (log of odds)
scores of all the 80 markers (main effects) are plotted in
Figure 1. Four markers have LOD scores greater than 6,
which are M56, M8, M44 and M39. The marker with
the largest LOD score (M56) explained 13% of the phe-
notypic variance. The marker with the smallest LOD
score (M39) of the four explained about 5% of the phe-
notypic variance. The four markers collectively
explained about 30% of the phenotypic variance. We
used the leave-one-out cross validation analysis [17] to
select the top 27 markers (see next paragraph for the
result of cross validation) and found that the 27 markers
collectively explained about 33% of the phenotypic var-
iance. The marker effects and their LOD scores are pre-
sented in Table 2.
We now examine the result of cross validation. All the

80 markers were ordered from the largest to the smal-
lest according to the LOD scores. We then used the

cross validation analysis to calculate the squared correla-
tion coefficient between the observed phenotypic values
and the predicted genomic values. For the prediction,
we examined the change of the r-square with the num-
ber of markers included in the model for prediction.
The result is plotted in Figure 2 (the curve in black).
When only the marker with the largest LOD was

Table 1 Names, positions (cM) and linkage groups (LG) of
the 80 markers (M1-M80) presented in Tables 2 and 3,
Figures 1, 2, 3 and 5

Marker
ID

Marker
name

cM LG Marker
ID

Marker
name

cM LG

M1 Satt005 0.00 1 M11 Satt123 0.00 10

M74 Satt579 149.39 1 M73 Satt576 70.86 10

M37 Satt290 241.33 1 M9 Satt094 138.02 10

M70 Satt537 586.72 1 M6 Satt052 0.00 11

M4 Satt032 0.00 2 M44 Satt353 89.85 11

M58 Satt436 196.10 2 M61 Satt469 169.72 11

M79 Satt605 272.50 2 M23 Satt181 169.72 11

M69 Satt532 388.23 2 M57 Satt434 293.93 11

M75 Satt584 0.00 3 M41 Satt317 465.41 11

M31 Satt234 152.25 3 M72 Satt568 670.93 11

M49 Satt387 244.95 3 M15 Satt150 0.00 12

M3 Satt022 304.72 3 M63 Satt494 345.39 12

M32 Satt247 0.00 4 M26 Satt201 455.66 12

M43 Satt337 345.39 4 M22 Satt175 538.75 12

M13 Satt137 439.85 4 M71 Satt567 588.30 12

M62 Satt475 545.69 4 M56 Satt427 0.00 13

M47 Satt375 545.69 4 M12 Satt130 91.38 13

M33 Satt264 609.52 4 M25 Satt199 190.84 13

M5 Satt046 670.69 4 M65 Satt505 259.01 13

M34 Satt268 0.00 5 M76 Satt594 604.40 13

M28 Satt213 345.39 5 M24 Satt195 0.00 14

M78 Satt602 434.04 5 M19 Satt161 68.96 14

M52 Satt411 528.24 5 M38 Satt294 170.89 14

M48 Satt384 600.86 5 M51 Satt399 255.15 14

M30 Satt231 674.74 5 M68 Satt529 0.00 15

M77 Satt598 743.69 5 M29 Satt215 72.32 15

M40 Satt307 0.00 6 M67 Satt528 417.71 15

M36 Satt286 41.97 6 M17 Satt158 0.00 16

M53 Satt422 88.51 6 M27 Satt206 345.39 16

M35 Satt281 164.63 6 M14 Satt146 0.00 17

M66 Satt520 252.18 6 M18 Satt160 89.85 17

M80 GMA 300.27 6 M54 Satt425 197.04 17

M7 Satt082 0.00 7 M46 Satt374 273.57 17

M50 Satt397 345.39 7 M16 Satt155 0.00 18

M21 Satt168 0.00 8 M39 Satt300 76.49 18

M60 Satt467 67.12 8 M42 Satt330 0.00 19

M10 Satt122 247.35 8 M59 Satt451 98.09 19

M45 Satt373 0.00 9 M2 Satt008 N/A N/A

M64 Satt495 345.39 9 M8 Satt085 N/A N/A

M20 Satt166 462.25 9 M55 Satt426 N/A N/A
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included, the r-square was only 0.12. As the number of
markers increased, the r-square started to increase until
it reached 0.32 when 15 markers were included. The
r-square then dropped and raised again to 0.33 when
the top 27 markers (based on LOD scores) were
included. Further increase of the number of markers
caused a progressive decrease of the r-square until it
reached 0.3 when all the 80 markers were included.
This explains why we presented the top 27 markers in
the previous paragraph. The cross validation helped us
determine the optimal number of markers for inclusion.
Once the optimal number of markers is reached, further
inclusion of markers with small effects actually intro-
duced noise and thus decreased the r-square value. To
make sure that the plot was not generated due to any
artifacts, we also included markers randomly rather than
selectively based on their LOD scores. The correspond-
ing profile of the r-square is also shown in Figure 2 (the
curve in blue). We can see that randomly selected mar-
kers did not show the desired pattern as the ordered
marker selection. Therefore, as far as the main effects
are concerned, genome selection using the top 27 mar-
kers based on LOD scores is the optimal strategy for the
soybean embryogenesis trait.

Epistatic effect model
The epistatic effect model included 3240 (80 main +
3160 epistatic) effects. The LOD scores of the 3160 epi-
static effects are given in Figure 3. The interaction with
the largest LOD score happened between markers M3
and M39. This single interaction explained 6.5% of the
phenotypic variance. The interaction with the second
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Figure 1 LOD scores for the 80 markers (main effects) obtained from the empirical Bayesian analysis.

Table 2 The empirical Bayesian estimates of the top 27
marker (main) effects

Marker Variance Effect StdErr LOD p- value H

M56 1.0181 1.0016 0.1228 14.44 0.0000 0.1303

M8 0.7492 0.8581 0.1118 12.77 0.0000 0.0980

M44 0.4744 -0.6783 0.1193 7.01 0.0000 0.0562

M39 0.4328 -0.6466 0.1217 6.13 0.0000 0.0525

M12 0.3084 -0.5437 0.1134 4.98 0.0000 0.0384

M22 0.3108 0.5455 0.1143 4.94 0.0000 0.0399

M51 0.3114 0.5444 0.1228 4.26 0.0000 0.0375

M65 0.2437 0.4797 0.1163 3.69 0.0000 0.0304

M69 0.2126 -0.4477 0.1109 3.53 0.0001 0.0271

M53 0.2095 0.4439 0.1111 3.46 0.0001 0.0241

M15 0.2217 -0.4543 0.1240 2.91 0.0003 0.0270

M72 0.1711 -0.3989 0.1095 2.88 0.0003 0.0210

M26 0.1781 -0.4054 0.1167 2.62 0.0005 0.0203

M23 0.1909 -0.4192 0.1241 2.47 0.0007 0.0222

M42 0.1915 0.4188 0.1267 2.37 0.0010 0.0232

M60 0.1662 -0.3900 0.1185 2.35 0.0010 0.0191

M54 0.1506 -0.3712 0.1133 2.33 0.0011 0.0173

M25 0.1437 0.3625 0.1111 2.31 0.0011 0.0181

M10 0.1336 0.3492 0.1075 2.29 0.0012 0.0166

M36 0.1433 -0.3605 0.1150 2.13 0.0017 0.0167

M4 0.1363 0.3513 0.1138 2.07 0.0020 0.0158

M16 0.1171 -0.3233 0.1121 1.80 0.0039 0.0135

M34 0.1141 0.3187 0.1120 1.76 0.0044 0.0133

M61 0.0982 -0.2951 0.1055 1.70 0.0052 0.0118

M45 0.1027 -0.2997 0.1136 1.51 0.0083 0.0116

M5 0.0961 -0.2890 0.1121 1.44 0.0099 0.0106

M13 0.0802 -0.2619 0.1081 1.27 0.0154 0.0093

The last column (H) gives the proportion of phenotypic variance contributed
by each marker. The markers are sorted based on their LOD scores.
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largest LOD score occurred between M1 and M26,
explaining 4.5% of the variance. The top 66 effects and
their LOD scores are given in Table 3 (see the cross
validation analysis for the epistatic model). Collectively,
the top 66 effects explained 77% of the phenotypic

variance. When the model included this many effects,
the estimated values were all shrunken toward zero to a
large degree. All the selected top 66 effects were epi-
static effects and the main effects were all shrunken to
very small values compared with the epistatic effects. In
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Figure 2 The r-square between the phenotypic values of somatic embryogenesis of soybean and their predictions by the leave-one-
out cross validation analysis. The black curve represents the change of squared correlation coefficient by increasing the number of sorted
markers (from the strongest to the weakest) in the model. The blue curve shows the change of squared correlation coefficient by increasing the
number of randomly selected markers in the model. The squared correlation coefficient reaches its maximum at 0.33 when 27 markers with the
largest LOD scores are included in the model.
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Figure 3 LOD scores for all the marker pairs (epistatic effects) obtained from the empirical Bayesian analysis.
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facts, their effects were absorbed by the epistatic effects
due to correlation between the marker genotype indica-
tor variables and the marker pair genotype indicator
variables under linkage.
The 66 effects were selected from the leave-one-out

cross validation analysis. Figure 4 shows the r-square
between the observed traits and the predicted genomic
values plotted against the number of effects included.
When the interaction with the largest LOD score
(M3×M39 interaction) was used alone to predict the geno-
mic value, the r-square value was about 0.065. As the num-
ber of included effects increased, the correlation increased
dramatically and reached the maximum value of 0.78 when
the top 66 effects were included. Further increasing the
number of effects caused a slight decrease until the correla-
tion reached 0.73 when all effects were included. This
explains why the top 66 effects were selected for predic-
tion. Figure 4 also shows the r-square profile (blue) for ran-
dom inclusion of effects for genome prediction. The curve
(in blue) progressively increased until the correlation
reached 0.78 that coincides with the black curve for selec-
tive inclusion. This pattern is different from that of the
main effect model. Further discussion of the r-square pro-
file is provided later in the discussion section.
Figure 5 shows the network of marker interactions

where interacting markers are connected with lines
whose thicknesses are proportional to the degrees of
interactions (LOD scores). Although none of the top 27
main effects showed significant effects when evaluated
together with the epistatic effects, 10 of them did appear
in the epistatic model as interacting loci.

Table 3 The empirical Bayesian estimates of the top 66
marker (main) effects and marker pair (epistatic) effects

Marker
1

Marker
2

Variance Effect StdErr LOD p-
value

H

M3 M39 0.5519 0.7409 0.0476 52.60 0.0000 0.0648

M1 M26 0.4070 0.6365 0.0479 38.29 0.0000 0.0469

M7 M35 0.2960 -0.5417 0.0460 30.06 0.0000 0.0324

M1 M56 0.2342 -0.4832 0.0453 24.66 0.0000 0.0286

M1 M11 0.2163 0.4633 0.0446 23.42 0.0000 0.0263

M37 M59 0.1847 0.4280 0.0414 23.23 0.0000 0.0230

M7 M50 0.2234 -0.4710 0.0456 23.11 0.0000 0.0262

M1 M8 0.1722 -0.4127 0.0412 21.78 0.0000 0.0214

M4 M55 0.2026 -0.4468 0.0454 20.99 0.0000 0.0231

M8 M65 0.1768 0.4174 0.0436 19.87 0.0000 0.0223

M4 M22 0.1574 0.3950 0.0413 19.85 0.0000 0.0194

M11 M24 0.1484 0.3826 0.0414 18.51 0.0000 0.0189

M12 M42 0.1273 -0.3549 0.0385 18.39 0.0000 0.0157

M20 M24 0.1551 -0.3913 0.0426 18.32 0.0000 0.0194

M18 M80 0.1854 -0.4284 0.0475 17.67 0.0000 0.0215

M13 M34 0.1437 0.3772 0.0422 17.34 0.0000 0.0185

M13 M68 0.1175 0.3407 0.0387 16.82 0.0000 0.0156

M3 M70 0.1521 0.3866 0.0451 15.94 0.0000 0.0183

M5 M22 0.1252 0.3515 0.0418 15.37 0.0000 0.0153

M4 M79 0.1377 0.3681 0.0445 14.82 0.0000 0.0167

M4 M36 0.1016 0.3166 0.0395 13.91 0.0000 0.0120

M1 M16 0.1602 0.3975 0.0499 13.74 0.0000 0.0192

M8 M33 0.0941 -0.3046 0.0409 12.04 0.0000 0.0121

M2 M9 0.0920 0.3002 0.0434 10.37 0.0000 0.0105

M12 M24 0.0799 0.2789 0.0413 9.91 0.0000 0.0101

M27 M36 0.0748 0.2701 0.0420 8.97 0.0000 0.0094

M1 M45 0.0741 0.2695 0.0420 8.93 0.0000 0.0090

M33 M50 0.0682 0.2575 0.0435 7.61 0.0000 0.0087

M9 M19 0.0696 -0.2599 0.0443 7.46 0.0000 0.0089

M12 M71 0.0563 0.2338 0.0404 7.28 0.0000 0.0066

M8 M56 0.0630 0.2465 0.0434 7.01 0.0000 0.0077

M11 M26 0.0696 0.2596 0.0483 6.27 0.0000 0.0077

M7 M27 0.0702 -0.2605 0.0499 5.92 0.0000 0.0081

M1 M52 0.0558 -0.2322 0.0451 5.76 0.0000 0.0061

M28 M63 0.0500 0.2187 0.0437 5.43 0.0000 0.0061

M34 M38 0.0506 0.2203 0.0449 5.22 0.0000 0.0059

M53 M79 0.0520 -0.2232 0.0461 5.08 0.0000 0.0059

M39 M45 0.0495 0.2178 0.0451 5.05 0.0000 0.0055

M9 M80 0.0380 -0.1907 0.0407 4.76 0.0000 0.0043

M1 M17 0.0446 -0.2069 0.0442 4.75 0.0000 0.0051

M25 M80 0.0367 -0.1869 0.0411 4.48 0.0000 0.0042

M15 M21 0.0408 -0.1971 0.0449 4.18 0.0000 0.0051

M1 M22 0.0417 -0.1987 0.0471 3.86 0.0000 0.0050

M2 M10 0.0288 0.1643 0.0394 3.78 0.0000 0.0032

M5 M27 0.0330 -0.1769 0.0436 3.57 0.0001 0.0040

M14 M26 0.0347 -0.1810 0.0447 3.55 0.0001 0.0040

M5 M38 0.0232 -0.1454 0.0442 2.35 0.0010 0.0025

M11 M18 0.0217 -0.1408 0.0446 2.16 0.0016 0.0025

M2 M37 0.0240 -0.1480 0.0469 2.16 0.0016 0.0024

M13 M58 0.0193 0.1321 0.0428 2.07 0.0020 0.0023

Table 3 The empirical Bayesian estimates of the top 66
marker (main) effects and marker pair (epistatic) effects
(Continued)

M25 M53 0.0176 -0.1259 0.0421 1.94 0.0028 0.0019

M44 M80 0.0193 0.1305 0.0474 1.65 0.0059 0.0018

M22 M27 0.0132 -0.1074 0.0404 1.53 0.0079 0.0015

M10 M22 0.0136 0.1086 0.0411 1.51 0.0083 0.0016

M22 M24 0.0098 0.0921 0.0363 1.39 0.0112 0.0011

M1 M77 0.0135 -0.1061 0.0453 1.19 0.0193 0.0013

M71 M76 0.0105 -0.0930 0.0425 1.04 0.0288 0.0010

M29 M48 0.0071 0.0738 0.0415 0.68 0.0759 0.0007

M6 M67 0.0049 -0.0604 0.0364 0.60 0.0976 0.0005

M20 M45 0.0057 0.0639 0.0401 0.55 0.1114 0.0005

M1 M6 0.0037 -0.0509 0.0344 0.48 0.1385 0.0003

M22 M66 0.0035 0.0475 0.0359 0.38 0.1858 0.0003

M19 M47 0.0029 0.0419 0.0337 0.33 0.2141 0.0002

M50 M76 0.0027 0.0396 0.0338 0.30 0.2410 0.0002

M62 M68 0.0021 -0.0338 0.0316 0.25 0.2847 0.0002

M22 M23 0.0027 0.0375 0.0359 0.24 0.2964 0.0002

The last column (H) gives the proportion of phenotypic variance contributed
by each effect. The effects are sorted based on their LOD scores.
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The conclusion from the epistatic model analysis was
that selecting the top 66 effects for prediction, the accu-
racy (r-square) can reach 78%. If all effects are included,
the accuracy decreased slightly to 0.73. Therefore, gen-
ome selection using the epistatic model can be very
effective in soybean breeding for the embryogenesis
trait.

Discussion and conclusion
We evaluated two models of genome selection for soy-
bean embryogenesis, the main effect model and the epi-
static effect model. The main effect model is already
very efficient with a 0.33 r-square between the observed
phenotypes and the predicted genomic values. With the
epistatic effect model, the squared correlation was 0.78,
more than twice the efficiency of the main effect model.
This discovery provides surprisingly good news to soy-
bean breeders. The squared correlation coefficient
between the observed phenotypes and the predicted
genomic values is different from the R2 value in multiple
regression analysis. The r-square here is the squared
correlation between the observed phenotypes and the
estimated genetic values in which the individual lines
predicted contribute to the parameter estimation. The
r-square of our epistatic effect model was very high (0.78).
In the cross validation generated correlation, the lines pre-
dicted do not contribute to the parameter estimation, and
thus the squared correlation is a good indication of the
predictability. If a new line occurs from the same popula-
tion but has no phenotypic value, using the marker effects

estimated from the existing lines to predict the genetic
value of the new line will be as accurate as 0.78. This can
save tremendous resources for plant breeding because we
can use marker information alone to select plants in sev-
eral cycles without field evaluation of the phenotypes.
Cross validation analysis showed that the main effect

model found 27 important markers, but none of the 27
markers appeared as main effects in the epistatic effect
model. This means that epistasis plays a more important
role in determining the variation of soybean embryogen-
esis. These 27 markers did not disappear completely;
parts of their effects have been absorbed by the epistatic
effects due to correlation of variables in the design
matrix. The epistatic model provides better prediction of
the genomic values, but it does not disqualify the main
effect model. When epistatic effects are excluded from
the model, parts of their effects have been absorbed by
the main effects due to complicated correlation among
the design matrices of the effects. If a breeder decides to
use the additive effect model alone for genome selection,
he/she still has an accuracy of 0.33.
We used the cross validation analysis to select mar-

kers and marker pairs for genome selection. We pro-
gressively increased the number of effects in the model
to monitor the change in the accuracy of prediction.
The optimal number of effects included is the one that
maximizes the accuracy of prediction or minimizes the
prediction error. The pattern of the change depends on
the models used and the traits analyzed. For the main
effect model, including more effects than necessary is
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Figure 4 The r-square between the phenotypic values of somatic embryogenesis and their predicted values. The black curve represents
the change of squared correlation coefficient by increasing the number of sorted (from the strongest to the weakest) effects (markers and
marker pairs) in the model. The blue curve shows the change of squared correlation coefficient by increasing the number of randomly selected
effects (markers and marker pairs) in the model. The squared correlation coefficient reaches its maximum at 0.78 when 66 effects with the
largest LOD scores are included in the model.
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detrimental to genome selection. For the epistatic effect
model, the decrease of the prediction accuracy does not
seem to be significant after the optimal number of
effects is reached. The reason for the difference in the
two models (additive and epistatic) is due to the fact
that the large number of effects in the epistatic model
caused strong shrinkage of the estimated regression
coefficients. Once the prediction accuracy reached the
peak value, additional effects included all have extremely
small values (virtually equal to zero). Including these
zero effects does not cause much damage to the predic-
tion. These patterns of the correlation profiles cannot
be generalized to other situations. Therefore, cross vali-
dation must be performed for different traits in different
experiments.
Unfortunately, the marker density in this experiment

was very low in the experiment, which prevented us from
using the interval mapping and composite interval

mapping approaches for fine mapping. The average inter-
val for the 77 mapped markers was 40 cM. For such a low
marker density, we were more concerned about not
detecting any QTL. To our surprise, we found more QTL
than we originally anticipated. Our cross validation analy-
sis confirmed 27 main effects and 66 epistatic effects.
Therefore, we conclude that the soybean embryogenesis is
a polygenic trait. The current analysis provides a guideline
for further study in fine mapping of QTL for embryogen-
esis of soybean. The next step is to develop more markers
to saturate the entire genome. With a high density marker
map, more efficient genome selection can be conducted.
The number of somatic embryos is a discrete trait,

which can be modeled by the Poisson distribution.
In this particular experiment, each original data point
was the average of 10 plants. Therefore, treating the
average value as a continuous trait is more reasonable
than fitting the Poisson model. For curiosity, we did
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analyze the data using the Poisson distribution. We also
performed a data transformation using the square root
of the data [18]. The results were almost identical to the
current analysis regarding the markers and marker pairs
identified (data not shown).
The main purpose of this study was not to develop

new statistical methods for genome selection; rather, we
used an existing method [13] to investigate the possibi-
lity of using genome selection to improve soybean
embryogenesis. The empirical Bayesian method is ade-
quate to handle 80 markers with all pair-wise interac-
tions. When marker density is high, the method may be
limited for handling all pair-wise interactions. Past
experience [5] showed that the method can handle the
number of effects about 60 times as large as the sample
size. In this case, the maximum number of effects that
can be handled with 126 lines (sample size) is about 126
× 60 = 7560., which is equivalent to about 122 markers.
For 1000 markers with roughly 500,000 effects, the sam-
ple size should be about 8000 in order to estimate these
many effects. When the sample size is limited, improved
methods are required. One of the authors in this study
(XC) is developing a fast empirical Bayes (fEB) method,
which can handle the number of effects as large as 800
times the sample size (unpublished result).
In plant breeding, it is common to select superior culti-

vars from a random pool of existing accessions. The
empirical Bayesian method used in this study works equally
well for such randomly selected populations. It is also com-
mon to select superior RILs from an RIL crossing experi-
ment derived from two inbred lines [19]. The result of this
study can be directly applied to plant breeding using RILs
as plant material. In fact, we are in the process of adding
more markers and designing a field experiment to apply
the selected RILs to improve soybean embryogenesis.
This study demonstrates the importance of epistasis in

determination of the embryogenesis of soybean. This find-
ing is clearly in contrast to what Xu and Jia [5] discovered
in barley where additive effects play a more important role
than epistatic effects in all seven traits investigated in the
experiment. However, it is consistent with the study in
corn by Dudley and Johnson [9] who discovered that epi-
static effects are important in genome selection for yield
and oil content traits. Studying the grain yield and its com-
ponent traits in maize, Ma et al. [20] found that the relative
importance of main effects and epistatic effects varies
among traits. In addition, they found that only a small
proportion of the main-effect QTL interact with other
QTL. The study by Yu et. al [21] showed that epistasis also
plays a major role in hybrid vigor in rice. This study and
the studies by others mentioned above all concluded that
main effects and epistatic effects do not have any intrinsic
connections. In other words, whether markers interact or
not does not depend on the presence of main effects of the

two interacting markers. This further supports the notion
that epistatic effects and main effects must be studied
simultaneously, rather than in sequence where main effects
are studied first and epistatic effects are then evaluated
only on those markers with significant main effects.
Although there were hundreds of studies in the past

decades claiming discovery of major QTL in plants, only
a few of them have successfully cloned QTL [22]. QTL
mapping and cloning are definitely rewarding. However,
many complex traits may be contributed mainly by QTL
interactions [9,20,21]. Some may be contributed by poly-
gene only, like the soybean embryogenesis presented in
this study. QTL cloning in such cases is obviously not a
practical strategy to perform marker aided selection. For-
tunately, genomic selection, a special form of marker
assisted selection (different from the classical marker
assisted selection), has been invented to estimate the
molecular breeding values by utilizing saturated markers
of the entire genome [2]. Dudley and Johnson [9] further
improved the efficiency of genome selection by including
epistatic effects in the model. Our study further supports
the study of Dudley and Johnson [9]. There is a critical
difference between our study and that of Dudley and
Johnson. They used a partial least squares (PLS) method
to predict the total genomic values of plants, in which
marker-trait association was indicated by the association
of a few principal components. Our study, however, eval-
uated the association directly through the association of
observed phenotype and marker genotypes, making the
method feasible in practical breeding program.
The entire data analysis was conducted using the QTL

procedure in SAS, called PROC QTL [23]. This program
can perform QTL mapping for not only continuous
traits but also discrete traits, such as binary, ordinal,
binomial and Poisson traits. In addition, the QTL proce-
dure provides an opportunity for the users to choose
maximum likelihood, least squares, weighted least
squares or Bayesian method for interval mapping, com-
posite interval mapping or multiple interval mapping.
Furthermore, the procedure can analyze multiple traits
using the multivariate model. The Bayesian analyses pre-
sented in this study were conducted using this QTL
procedure. The program is freely downloadable from
our website (http://www.statgen.ucr.edu).

Methods
Experimental material
The mapping population consisted of 126 F5:6 recombi-
nant inbred lines (RILs) that were advanced by single
seed descent from the cross of Peking (higher primary and
secondary embryogenesis) and Keburi (lower primary and
secondary embryogenesis) parents. This population was
evaluated for primary embryogenesis capacity from imma-
ture embryo cultures by measuring the somatic embryo
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number per explant. A total of 80 simple sequence repeat
markers were available and used for the QTL study.
Among the 80 markers, 77 of them were mapped to 19
linkage groups [24]. The marker map was too sparse to
perform a meaningful interval mapping. Therefore, we
only conducted marker-trait association study, i.e., marker
analysis. The remaining three markers were not mapped
to any linkage groups, but were subjected to the same
marker-trait association study as the 77 linked markers.
The phenotype (trait) was measured as the number of
somatic embryos per explant. The experiment was repli-
cated in three different plots. Although the number of
RILs was 126, the actual number of data points for the
three replications was n = 3 × 126 = 378. Detailed infor-
mation about this experiment can be found from Song et
al. [24]. To remove the plot effects, each data point was
subtracted by the mean of the corresponding plot.

Empirical Bayesian analysis
Main effect model
Genotypes of the Peking cultivar (high embryogenesis)
and the Keburi cultivar (low embryogenesis) are denoted
by A1A1 and A2A2, respectively. The genotype of each
marker locus was numerically coded and represented by
a variable Zjk for the jth data point for j = 1, ..., n and
the kth marker for k = 1, ..., m, where n = 378 is the
number of data points collected from the 126 recombi-
nant inbred lines and m = 80 is the number of markers.
The numerical coding for Zjk is shown below,

(1)

The linear model for the plot-mean-adjusted phenoty-
pic value is

y Zj jk k

k

m

j= + +
=

∑b g e
1

(2)

where b is the population mean, gk is the effect of the
kth marker and εj ~ N(0,s2) is the residual error. The
marker effect gk is equivalent to the classical definition
of the additive effect a defined in Falconer and Mackay
[25]. Model (2) is called the main effect model, which
was used in the Bayesian shrinkage analysis for compari-
son with the epistatic model.
Epistatic effect model
Let k and k’ be two different marker loci, the epistatic
effect model is

y Z Z Zj jk k

k

m

jk jk kk

k k

m

j= + + +
= >

∑ ∑   
1

’ ’

’

(3)

where gkk’ is the epistatic effect between markers k and
k’. The total number of model effects is m(m + 1)/2 =
3240, including m = 80 main effects and m(m - 1)/2 =
3160 epistatic effects.
Prior distribution
Both the main effect model and the epistatic effect
model were analyzed using the empirical Bayesian
method [13] implemented in the QTL procedure in SAS
[23]. In the empirical Bayesian analysis, each QTL effect,
gk or gkk’, was assigned a normal prior distribution

p Nk k k( ) ( | , )  = 0 2 (4)

where the variance  k
2 was further assigned a scaled

inverse chi-square prior

p k k( ) ( | , )    2 2 2= −Inv (5)

The hyper parameters (τ, ω) were chosen using the
leave-one-out cross validation approach [17]. By trial
and error, we found that (τ, ω) = (-2,0) generated the
best result for this data in terms of generating the maxi-
mum correlation between the predicted and observed
trait values and the minimum prediction error. This set
of hyper priors is equivalent to the uniform prior for

 k
2 , i.e., p( k

2 ) = 1.

LOD score calculation
We first calculate the Wald-test statistic. For the main
effect analysis, the Wald test statistic was

W k

k

=




^

^

var( )

2

(6)

For the epistatic effect between loci k and k’, the Wald
test statistic was

W kk

kk

=




^

^

’

’var( )

2

(7)

The p-value corresponding to the Wald test was
calculated from

p F W− = −value 1 12 ( , ) (8)

where F W 2 1( , ) is the central c2 distribution with

one degree of freedom evaluated at W. The Wald test
statistic was further converted to the LOD score using

LOD = W

2 10ln( )
(9)
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which was presented in the final report and also used
to select markers and marker pairs in the cross valida-
tion analyses.

Cross validation
We used the leave-one-out cross validation approach [17]
to evaluating the model and determining the hyper para-
meter values used in the priors and the optimal number
of markers to be included in the model for prediction of
the genomic values of the 126 recombinant inbred lines.
In the cross validation analysis, we used 125 lines to esti-
mate the parameters and used the estimated parameters
from the 125 lines to predict the total genetic effect for
the remaining line. Eventually, the genomic value of each
line was predicted using the parameters estimated from
the other 125 lines. We then calculated the squared cor-
relation coefficient between the observed phenotype yj
and the predicted genomic value y j

^
,

y Zj jk k

k

m
^ ^ ^

*

*
*

= +
=

∑ 
1

(10)

where g*k is the kth effect (either a main effect or an
epistatic effect), Z*jk is the corresponding design matrix
for the kth effect and m* is the number of effects
included in the model for prediction. The effects were
ordered from the highest to the lowest based on their
LOD scores. For example, if m* = 15, the model only
includes the best 15 effects in the model for prediction.
The squared correlation coefficient between the

observed and predicted trait values r m
y y
^( )*2

becomes a

function of m* for m* = 1, ..., 80 (the main effect model)
and for m* for m* = 1, ..., 3240 (the epistatic effect
model). The optimal m* is the one that maximizes the

squared correlation coefficient r m
y y
^( )*2

, where

r
y y

y y y y
y y

j jj

n

j jj

n

jj

n
^

^

^ ^

( )

( ) ( )

2

2

1

2

1

2

1

1= −
−

− + −

=

= =

∑
∑ ∑

(11)

is the squared correlation coefficient. Note that this
statistic is not the Pearson correlation; rather, it repre-
sents the proportion of the phenotypic variance
explained by the markers.
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