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Abstract

referred to as dCNDP2), is still unknown.

CNDP2 protein using D. melanogaster as a model system.

Background: Expression of the CNDP2 gene is frequently up- or down-regulated in different types of human
cancers. However, how the product of this gene is involved in cell growth and proliferation is poorly understood.
Moreover, our knowledge of the functions of the CNDP2 orthologs in well-established model organisms is scarce.
In particular, the function of the D. melanogaster ortholog of CNDP2, encoded by the CG17337 gene (hereafter

Results: This study was aimed at developing a set of genetic and molecular tools to study the roles of dCNDP2. We
generated a dCNDP2 null mutation (hereafter AdCNDP2) using CRISPR/Cas9-mediated homologous recombination (HR) and
found that the AJCNDP2 mutants are homozygous viable, morphologically normal and fertile. We also generated
transgenic fly lines expressing eGFP-tagged and non-tagged dCNDP2 protein, all under the control of the UAS promoter,
as well as polyclonal antibodies specific to dCNDP2. Using these tools, we demonstrate that only one of the two predicted
dCNDP2 isoforms is expressed throughout the different tissues tested. dCNDP2 was detected in both the cytoplasm and
the nucleus, and was found to be associated with multiple sites in the salivary gland polytene chromosomes.

Conclusions: The dCNDP2 gene is not essential for fly viability under standard laboratory conditions. The subcellular
localization pattern of dCNDP2 suggests that this protein might have roles in both the cytoplasm and the nucleus. The
genetic and molecular tools developed in this study will allow further functional characterization of the conserved
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Background

Peptidases with different substrate specificities play dis-
tinct roles in protein and peptide metabolism in eukary-
otes. Mammalian CNDP2 (also known as carnosine
dipeptidase 1I, CN2, carboxypeptidase of glutamate-like,
CPGL) belongs to the M20 family of metallopeptidases
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and has broad substrate specificity for dipeptides [1, 2].
It is active only as a homodimer [3], and the catalytic
domain of each dimer subunit has one active center with
two Mn** or Zn** ions, which determine the specificity
of the enzyme for its physiological substrates [4]. So far,
CNDP2 is the only known protease that can catalyze the
formation of pseudodipeptides of lactic acid and amino
acids (N-lactoyl-amino acids) through reverse proteolysis
in vivo [5]. Thus, besides its proteolytic activity, CNDP2
might perform other cellular functions.
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An aberrant expression of CNDP2 is associated with
tumorigenesis in humans. A decreased CNDP2 level was
observed in pancreatic cancer, hepatocellular carcinoma
and gastric cancer [2, 6, 7]. The CNDP2 isoform,
CPGL-B, which lacks part of the catalytic domain, has
been also implicated in tumor suppression, but it is cur-
rently unknown whether CPGL-B has peptidase activity
[2, 6, 7]. However, not all tumors are characterized by
low CNDP2 levels. An upregulated expression of
CNDP2 has been indeed observed in breast carcinoma,
and in kidney and colon cancers [8—11]. Several studies
have been devoted to understanding the contribution of
CNDP2 to carcinogenesis [2, 6-11], but an animal model
with mutated CNDP2 is not currently available.

The CNDP2 protein is highly conserved across species
[1, 12-14] and ubiquitously expressed ([1]; A Database
of Drosophila Genes & Genomes available from flyba-
se.org [15]). In mouse and human cells, CNDP2 localizes
to the cytosol and the nucleoplasm (Human Protein Atlas
available from www.proteinatlas.org [16]); in transiently
transfected Chinese hamster ovary (CHO) cells, CNDP2
was found in the cytoplasmic fraction [1]. In D. melanoga-
ster, there is only one CNDP2 gene (CG17337; flybase.org
[15]), hereafter referred to as dCNDP2. Alignment of the
amino acid sequences of the longest isoform of human
CNDP2 (475 amino acids; GenPept accession no.
NP_060705.2) and the longest isoform of Drosophila
dCNDP2 (478 amino acids; GenPept accession no.
NP_610181.2) revealed 63% sequence identity along the
entire length of the polypeptide. Among the few D. mela-
nogaster genes encoding the M20 metallopeptidase pro-
teins, only dCNDP2 is ubiquitously expressed with
moderate to high level (flybase.org [15]). The product of
this gene was shown to be an extracellular component of
larval hemolymph [17, 18], but its subcellular localization
is unknown.

To address the role of CNDP2 in cell growth and prolif-
eration we decided to exploit D. melanogaster as a model
system. The ease of genomic manipulations in flies allows
investigation of processes at both the organismal and cel-
lular levels. In this study, we generated a null dJCNDP2
mutant, transgenic lines for inducible dCNDP2 expres-
sion, polyclonal antibodies against dCNDP2 and use these
tools to provide an initial characterization of the protein.

Methods

Fly stocks

Flies were raised and crossed at 25 °C according to standard
procedures. The following lines from the Bloomington
Drosophila Stock Center (Bloomington, IN; bdsc.india-
na.edu) were used: #1824 (y' w¥ Pw*"™™ S -GawB}ABI);
#32186 (w4 Py w =10xUAS-IVS-mCD8:GF-
PjattP40); #4775 (w'''%; Ppw*"“=UAS-GFP.nis}14); #24488
(' M{vas-int. Dm}ZH-2A w* M{3xP3-RFP.attP}ZH-102D);
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#51325 w8, PBac{y™™"=vas-Cas9,U6-tracrR-
NA}VK00027) and #6599 (' w®”“*) as a wild-type control.
The stock carrying the nanos-Cre transgene [19] and the
P{CaryP}attP154 line [20] were kindly provided by Stepan
N. Belyakin and Sergei A. Demakov, respectively (IMCB SB
RAS, Novosibirsk, Russia).

Plasmid constructs

Twenty-nucleotide guide RNA (gRNA) sequences for
the dCNDP2 gene, gRNA1 (5'-GUAAAAUAGAUUCG
ACGUAA-3") and gRNA2 (5'-GAACCAGAUAUGAC
CCGCGA-3"), were designed using the CRISPR Design
tool (zlab.bio/guide-design-resources). Their correspond-
ing DNA sequences were cloned into the
pU6-BbsI-chiRNA plasmid vector [21] downstream of
the Drosophila U6 promoter by using the Bbsl restric-
tion sites to produce pU6-5'dCNDP2-chiRNA and
pU6-3'dCNDP2-chiRNA constructs. Each plasmid ex-
presses chimeric RNA (chiRNA) composed of the
tractRNA from Streptococcus pyogenes with the specific
20-nt gRNA sequence at the 5° end [21]. The plasmid
vector pU6-BbsI-chiRNA was a gift from Melissa Harri-
son & Kate O’Connor-Giles & Jill Wildonger (Addgene
plasmid #45946).

The plasmid construct pGX-5'&3’'-dCNDP2-null con-
taining a “GMR enhancer-mini-white gene” reporter cas-
sette placed between two DNA fragments, which flank the
dCNDP2 gene in the D. melanogaster genome and here
referred to as 5'- and 3’-homology arms (or simply the
left and right arms), was made as follows. First, the left
arm (2R:5,695,002—5,696,806; here and afterwards, coordi-
nates are from Release 6 of the D. melanogaster genome
assembly [22]) was cloned into the pGX-attP plasmid vec-
tor [23] using the unique NotI and Kpnl sites. This yielded
the intermediate pGX-5'-dCNDP2-null plasmid. Next, the
right arm (2R:5,701,122-5,703,566) was cloned into the
pGX-5"-dCNDP2-null plasmid by using the unique Ascl
and Xhol sites to produce the pGX-5'&3'-dCNDP2-null
construct. The cloned right arm contains the following
three single nucleotide variations, all upstream of the vic
gene transcription start site: 5,701,650 T > C, 5,701,704_
5,701,705insA and 5,701,862 T > C. The plasmid vector
pGX-attP [23] was kindly provided by Sergei A. Demakov
(IMCB SB RAS, Novosibirsk, Russia).

To make a rescue construct pGE-attB-GMR-dCNDP2,
we cloned a 4.3-kb genomic DNA fragment carrying the
dCNDP2 gene (2R:5,696,807-5,701,121) into the
pGE-attB-GMR plasmid vector [23] using the unique
Nhel and Ascl sites. The cloned DNA fragment contains
the following eight single nucleotide variations within
and nearby the dCNDP2 gene: 5,697,584C > T (upstream
of the distal transcription start site), 5,698,421 T > A,
5,699,251 T > G, 5,699,713G>T, 5,699,725del (in the
intronic  regions),  5,699,463G>A  (synonymous
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substitution), 5,700,144 T > A (in the 3’ untranslated re-
gion) and 5,700,278 T > C (downstream of the transcription
termination site). The plasmid vector pGE-attB-GMR
[23] was kindly provided by Sergei A. Demakov (IMCB SB
RAS, Novosibirsk, Russia).

To generate a pUASTattB-dCNDP2 construct for ectopic
expression of the dCNDP2 protein, we first PCR-amplified
the DNA sequence (corresponding to nucleotides 100—
1536 of GenBank accession no. NM_136337.3, but with
1023G > A and 1154A > T nucleotide substitutions) encod-
ing the longer isoform of dCNDP2 (478 amino acids; here-
after dCNDP2-A). As a template, we used a cDNA
synthesized from total RNA isolated from 0 to 24h
embryos from the wild-type Canton-S strain. Next, the
amplified DNA fragment was cloned into the pUAS-
TattB plasmid vector [24] by using the unique EcoRI
and Xbal sites.

To make pUASTattB-eGFP-dCNDP2 and pUASTattB-
dCNDP2-eGFP constructs for ectopic expression of N-
and C-terminal eGFP-tagged dCNDP2 fusion proteins,
we used the full-length dCNDP2-A coding sequence (see
above). It was fused in-frame either downstream or up-
stream of the eGFP coding sequence using site-directed
mutagenesis by overlap extension [25]. The DNA frag-
ments were then cloned into the pUASTattB plasmid
vector [24] using the unique EcoRI and Xbal sites and
the EcoRI and Kpnl sites, respectively.

To produce the pGEX-4T-dCNDP2 construct, the
full-length dCNDP2-A coding sequence (see above) was
cloned in-frame into the pGEX-4 T-1 plasmid vector (GE
Healthcare) downstream of the glutathione S-transferase
(GST) coding sequence using the BamHI and Xhol sites.

All plasmid constructs were verified by DNA sequen-
cing. Details of plasmid constructions are available upon
request.

Germline genome editing and transgenesis

To generate a null allele of dCNDP2, the pU6-5’
dCNDP2-chiRNA and pU6-3'dCNDP2-chiRNA target-
ing constructs and the donor pGX-5'&3’-dCNDP2-null
construct, all dissolved in water, were mixed to final
concentrations of 125 ng/pl, 125 ng/pl and 500 ng/pl, re-
spectively. The mixture was injected into embryos of the
w!18; PBacfy™"™P"? = yas-Cas9,U6-tracrRNA}VK00027
strain (Bloomington stock #51325) according to the
standard procedure as previously described [26]. In total,
986 embryos were injected, out of which only 191
(19.4%) developed to the adult stage. Transformants
were identified in the G; progeny of fertile injectees by w*
phenotype. We found only one such fly male, indicating
that the efficiency of the CRISPR/Cas9-mediated HR at
the dCNDP2 locus was 0.1% (1/986). The
pGE-attB-GMR-dCNDP2 plasmid was injected at the
concentration of 300ng/pl into AdCNDP2 embryos
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expressing the phiC31 integrase in the germline [24]. The
pUASTattB-dCNDP2, pUASTattB-eGFP-dCNDP2 and
pUASTattB-dCNDP2-eGFP plasmids were individually
injected at the concentration of 300 ng/ul into embryos
carrying attP154 landing site [20] and expressing the
phiC31 integrase in the germline [24].

Genomic DNA extraction and PCR genotyping of
engineered dCNDP2 alleles

To isolate genomic DNA, 3-5 flies were grinded in
200 ul of DNA extraction buffer (100 mM Tris-HCI [pH
7.5], 100 mM NaCl, 0.5% SDS, 50 mM EDTA [pH 8.0,
200 mM sucrose) in an 1.5-ml tube and the sample was
incubated at 65 °C for 30 min. Next, 300 ul of 5 M KAc
were added, mixed well by inversion and the sample was
kept on ice for 30 min. The tube was centrifuged for 15
min at 14,000 rpm. Then, the supernatant was trans-
ferred into a new tube and the DNA was precipitated
with ethanol. Finally, the pellet was dissolved in 10—
50 ul of nuclease-free water. PCR was performed using
Hot-Start 7aq DNA polymerase (Biolabmix, MHO010) ac-
cording to the manufacturer’s recommendations. For
genotyping the dCNDP2 locus after each step of its
modification, allele-specific primer pairs were used
(Additional file 1: Table S1). The PCR products were an-
alyzed on 1% agarose gel along with GeneRuler 1 Kb
Plus DNA Ladder (Thermo Scientific, SM1331).

Anti-dCNDP2 antibody production

The GST-dCNDP2 fusion protein was expressed in
Escherichia coli strain BL21(DE3)pLysS (Promega) and
subsequently purified as described previously [27]. The
purified GST-dCNDP2 fusion protein was used to
immunize mice. Polyclonal antibodies were affinity puri-
fied from serum as reported earlier [27].

S2 cell culture and RNA interference (RNAi)

First, we selected an 826-bp dCNDP2 gene fragment,
which is present in both transcript isoforms of the gene,
as a template for the synthesis of double-stranded RNA
(dsRNA). We amplified the DNA fragment using
primers 5'-TAATACGACTCACTATAGGGAGGcgagatc
ggtcg-3° and 5-TAATACGACTCACTATAGGGAGGa
tagcgccacctgg-3’ that contain the T7 polymerase pro-
moter sequence at their 5° ends (shown in capital let-
ters). The PCR product was purified using the GeneJET
PCR Purification Kit (Thermo Scientific, K0702) and
then used as a template to synthesize dsRNA as de-
scribed earlier [28], with minor modifications. Treatment
with DNasel was done after heating the synthesized
dsRNA to 65°C and its slow cooling to room
temperature; in addition, the phenol/chloroform extrac-
tion was omitted.
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S2 cells were free from mycoplasma contamination
and were cultured in 39.4 g/L Shields and Sang M3 In-
sect medium (Sigma, S8398) supplemented with 0.5 g/L
KHCO; and 20% heat-inactivated fetal bovine serum
(FBS; Thermo Scientific, 10270106) at 25 °C. RNAI treat-
ments were carried out as described previously [29],
with the following modifications. Twenty-five ug of puri-
fied dsRNA was added to the cells three times (on the
first, the third and the fifth days of incubation) and cells
were harvested for analyses after 7 days of RNAi. Con-
trol S2 cell samples were prepared in the same way, but
without addition of dsRNA.

Western blotting

Subcellular fractionation of normal S2 cells was con-
ducted as described previously [30]. RNAi-treated and
control S2 cells were harvested by centrifugation at 200
g for 5min at room temperature, washed with
phosphate-buffered saline (PBS) and centrifuged again.
S2 cell pellets and Drosophila embryos were homoge-
nized and lysed in RIPA buffer (Sigma, R0278) contain-
ing 1x Halt™ Protease and Phosphatase Inhibitor
Cocktail (Thermo Scientific, 1861282). The lysates were
clarified by centrifugation at 15,000 g for 15 min at 4°C
and the protein extracts were normalized using the DC
Protein Assay (Bio-Rad, 5000116). Each normalized sam-
ple was mixed with an equal volume of 2x Laemmli buf-
fer and incubated for 5 min at 95 °C prior to analysis by
SDS-PAGE and subsequent immunoblotting. Dissected
larval and fly tissues were homogenized in 1x Laemmli
buffer and incubated at 95°C for 5min prior to analysis
by SDS-PAGE and subsequent immunoblotting. The pri-
mary antibodies were mouse a-Lamin Dm0 (1:300; Devel-
opmental Studies Hybridoma Bank, ADL67.10), mouse
a-alpha-tubulin ~ (1:5000;  Sigma, T6199), mouse
a-dCNDP2 antibody (1:10,000; this study), rabbit
a-Histone H3 (1:1000; Pierce, PA5-17697) and rabbit
a-GFP (1:2000; Sigma, G1544); they were detected using
HRP-conjugated goat a-mouse IgG (1:3500; Life Technol-
ogy, G-21040) and goat a-rabbit IgG (1:3500; Life Tech-
nology, G-21234). Images were captured using an
Amersham Imager 600 System (GE Healthcare).

Immunofluorescence (IF) staining

Immunostaining of S2 cells and squashed salivary gland
polytene chromosomes was performed as described pre-
viously [31, 32]. The primary mouse polyclonal
a-dCNDP2 antibodies were used at dilution 1:1000 and
detected by goat a-mouse IgG antibodies conjugated to
Alexa Fluor 488 (1:500; Invitrogen, A-11001). IF images
of S2 cells were made using Zeiss LSM 710 confocal
microscope and an oil 100x/1.40 plan apo lens. IF im-
ages of polytene chromosomes were acquired with a
Zeiss Axio Observer.Z1 fluorescence microscope
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equipped with an Axiocam 506 mono (D) camera using
an oil 63x/1.40 plan apo lens. In both cases, ZEN 2012
software was used for image acquisition.

For detection of eGFP-tagged dCNDP2 fusion proteins,
whole salivary glands were fixed in PBS containing 4% for-
maldehyde (Merck, 104003), washed 3 times for 5min
each with PBS containing 0.5% Triton X-100, stained for
30min with 04 pg/ml DAPI dissolved in PBS and
mounted in 50% Glycerol dissolved in PBS. IF images of
whole-mounted glands were obtained on a Zeiss LSM 710
confocal microscope using a 20x/0.50 EC Plan-Neofluar
lens. Optical sections were combined using the LSM
Image Browser version 3.5 software (Zeiss).

Results

To address the function of dCNDP2, we generated a null
mutation in the gene, AdCNDP2, using the recently de-
veloped CRISPR/Cas9-mediated HR method [21], which
is illustrated in detail in Fig. 1 and in Additional file 2:
Figure S1. The final product of this procedure was the
AdCNDP2 null mutation that carries a phiC31 attP site
instead of the ~4.3-kb DNA sequence containing the
entire ACNDP2 gene. We found that homozygous mu-
tants do not display visible morphological abnormalities
and are fertile. We also used phiC31 integrase-mediated
recombination to deliver the same ~4.3-kb DNA frag-
ment that was deleted in AdCNDP2 back into its original
genomic location, and generated the AdCNDP2"*“®) g]-
lele (Fig. 1; Additional file 2: Figure S1).

The wild-type dCNDP2 gene is predicted to encode
two protein isoforms that are slightly different in their
amino acid sequences (the A and C isoforms, with mo-
lecular weights of 53.2kDa and 47.9 kDa, respectively;
see flyBase [15]). Namely, the shorter isoform does not
contain the first 47 amino acids that are present at the
N-terminus of the longer isoform. To analyze the ex-
pression pattern of dCNDP2 protein isoforms during
Drosophila development, we generated antibodies using
the full-length dCNDP2-A isoform as an antigen. The
specificity of the antibodies was first assessed by West-
ern blotting of protein extracts prepared from normal S2
cells and S2 cells treated with dCNDP2 dsRNA. In con-
trol cells, we observed a clear signal of the expected mo-
lecular weight that was almost absent in RNAi cells
(Fig. 2a). Western blotting with a-dCNDP2 antibodies
showed the absence of the protein also in embryos, ovar-
ies, brains and salivary glands of AdCNDP2 mutants
(Fig. 2b—e), and the expected restoration of dCNDP2 ex-
pression level in AdCNDP2*® flies (Fig. 2d, e). Inter-
estingly, in most tissues examined, the antibodies
recognized a single band, presumably corresponding to
the dCNDP2-A isoform (Fig. 2b—e). Only in 4—-6h old
embryos we detected a second faint band that might
correspond to the smaller predicted isoform of
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Fig. 1 Experimental design for generation of null and rescue alleles of the dCNDP2 gene. a Schematic representation of the dCNDP2 locus and
the donor plasmid pGX-5'&3"-dCNDP2-null, which contains the mini-white reporter gene (red) flanked by the left and right homology arms
(brown). The gRNA target sites are indicated by vertical arrows. b Modifications introduced into the dCNDP2 locus. In step 1, the dCNDP2 gene
was replaced by the mini-white reporter gene using CRISPR/Cas9-mediated HR approach. Note that the reporter gene is flanked by two loxP sites.
In step 2, the mini-white reporter was removed by Cre recombinase-mediated recombination between loxP sites. This resulted in generation of a
null allele (AdCNDP2), in which the dCNDP2 gene is replaced by the attP and loxP sites. In step 3, the rescue construct pGE-attB-GMR-dCNDP2
was integrated into the attP site by phiC31 integrase-mediated recombination. The rescue construct contains the mini-white reporter gene, which
upon integration into the genome becomes flanked by two loxP sites, and the genomic DNA fragment carrying the dCNDP2 gene that is absent
in AdCNDP2 mutants. In step 4, the mini-white reporter was removed by Cre recombinase-mediated recombination between loxP sites. This
resulted in generation of the AJCNDP2"*“®) transgenic flies, in which DNA sequence of the dCNDP2 locus is almost identical to the wild-type one
except for several single nucleotide variations (see Methods) and the presence of the attR and loxP sites. Black horizontal arrows indicate primers
used for PCR genotyping (for primers sequences, see Additional file 1: Table S1). Plasmids are drawn as circles with the relevant elements
indicated; Amp', ampicillin resistance gene; ori, plasmid origin of replication

dCNDP2 (Fig. 2b). These results suggest that only
one of the two predicted isoforms of the dCNDP2
protein is expressed in most tissues.

To determine the subcellular localization of dCNDP2,
we first immunostained S2 cells with o-dCNDP2

antibodies. We found that the protein is present in both
the nucleus and the cytoplasm, and that the nuclei ex-
hibit an unstained region that could be the nucleolus
(Fig. 2f). Consistent with Western blotting analysis, both
the nuclear and cytoplasmic stainings were
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dramatically reduced after the depletion of the protein
by RNAi (Fig. 2f). The localization pattern of
dCNDP2 was confirmed by subcellular fractionation
of S2 cell extracts. This analysis revealed that the
protein is predominantly cytoplasmic, but it is also a
soluble nuclear component (Fig. 3a).

We also generated transgenic fly lines expressing N- or
C-terminally eGFP-tagged dCNDP2 under the control of
the UAS promoter. When eGFP-dCNDP2 and dCNDP2-
eGFP proteins were expressed using ABI-GAL4 driver,
both recombinant proteins were predominantly localized
within the nucleus of salivary gland cells of third instar
larvae (Fig. 3b, ¢). We then immunostained salivary
gland polytene chromosomes from AdCNDP2,
AdCNDP2"*? and ABI-GAL4 > UAS-ACNDP2 larvae
with a-dCNDP2 antibodies and found that dCNDP2 as-
sociates with multiple chromosomal sites (Fig. 3d).
These results indicate that the Drosophila dCNDP2
protein, as its mammalian counterpart, is a component
of both the cytoplasm and the nucleus. In addition,
dCNDP2 protein is able to bind the chromatin of poly-
tene chromosomes.

Discussion

Our knowledge on consequences of the complete loss of
the CNDP2 gene function in humans is very limited.
There is only a single case report of a likely complete defi-
ciency of this gene, which is associated with global devel-
opmental delays, ataxia, hypotonia and tremor [33]. Yet,
in this case, the presence of a gross chromosomal deletion
does not allow a firm conclusion on whether the effects
are caused solely by CNDP2 deficiency [33]. Thus, it is dif-
ficult to decide whether the phenotypic consequences of
Drosophila dCNDP2 loss are substantially different from
those elicited by the loss of the human homolog.

Many studies reported that the CNDP2 gene is mis-
expressed in different types of human cancers [2, 6—
11]. CNDP2 was also found to be involved in the
regulation of the cell cycle in human cancer cell lines.
Specifically, CNDP2 overexpression in pancreatic can-
cer lines induced the accumulation of cells in the GO/
G1 phase [6], whereas knockdown of CNDP2 in colon
cancer cells blocked the cell cycle progression in the
G2/M phase [11]. However, the molecular mecha-
nisms underlying these effects have not been
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Fig. 3 dCNDP2 is present in both the cytoplasm and the nucleus. a Western blot showing subcellular fractionation of S2 cells. b Western blot
showing ectopic expression of eGFP-tagged proteins in salivary glands using the AB1-GAL4 driver. L3, third instar larval stage. ¢ Localization of
eGFP-tagged proteins in L3 salivary gland cells. GFP.nls and mCD&:GFP were used as controls for nuclear localization, and cytoplasmic and

transmembrane localization, respectively. Scale bar, 20 um. d dCNDP2 binds multiple sites on polytene chromosomes. The following exposure
times were used to acquire images of chromosomes immunostained with a-dCNDP2 antibodies: 800 msec, ACNDP2 and AdCNDP2®<49: 500
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uncovered. Thus, it will be interesting investigating
whether dCNDP2 is implicated in the control of the
Drosophila cell cycle.

The binding of dCNDP2 to polytene chromosomes
suggests that it may be involved in the regulation of pro-
cesses such as DNA replication, transcription or repair.
However, we have limited information on how this pro-
tein is transported into the nucleus. Typically, the nu-
clear localization of a protein larger than 40-45kDa is
controlled by the presence of a nuclear localization sig-
nal (NLS) of a specific amino acid sequence (for review,
see [34-36]). Indeed, we predicted an importin-a/p
pathway-specific monopartite NLS (YWLGKKRPCLTY)
in the middle portion of the dCNDP2 protein, using the
c¢NLS Mapper (nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Map
per_form.cgi [37]). However, the functionality of this motif

as a NLS has not been tested so far. A definition of the
dCNDP2 NLS could help designing experiments aimed at
understanding of the role of this protein in the nucleus.

Conclusions

We developed a set of genetic and molecular tools to
study the function of the dCNDP2 protein in D. melano-
gaster. Particularly, we generated the dJCNDP2 null allele
using a CRISPR/Cas9-mediated HR approach and differ-
ent transgenic flies to overexpress dCNDP2. We demon-
strated that this gene is not essential for fly viability
under standard laboratory conditions. Although two
dCNDP2 isoforms with different molecular weights have
been previously predicted, we detected the presence of
only one of them in most Drosophila tissues. Moreover,
we found that dCNDP2 is localized not only in the


http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
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cytoplasm, but also in the nucleus, where it can be asso-
ciated with chromatin. Thus, both the amino acid se-
quence of the protein and its subcellular localization are
conserved between mammals and fruit flies. This indi-
cates that D. melanogaster is a good model for further
elucidation of the mechanisms of CNDP2 action in the
context of the whole organism.
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